A clustering procedure for three-way RNA sequencing data using data transformations and matrix-variate Gaussian mixture models

Author:

Scharl Theresa,Grün Bettina

Abstract

AbstractRNA sequencing of time-course experiments results in three-way count data where the dimensions are the genes, the time points and the biological units. Clustering RNA-seq data allows to extract groups of co-expressed genes over time. After standardisation, the normalised counts of individual genes across time points and biological units have similar properties as compositional data. We propose the following procedure to suitably cluster three-way RNA-seq data: (1) pre-process the RNA-seq data by calculating the normalised expression profiles, (2) transform the data using the additive log ratio transform to map the composition in the D-part Aitchison simplex to a $$D-1$$ D - 1 -dimensional Euclidean vector, (3) cluster the transformed RNA-seq data using matrix-variate Gaussian mixture models and (4) assess the quality of the overall cluster solution and of individual clusters based on cluster separation in the transformed space using density-based silhouette information and on compactness of the cluster in the original space using cluster maps as a suitable visualisation. The proposed procedure is illustrated on RNA-seq data from fission yeast and results are also compared to an analogous two-way approach after flattening out the biological units.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clustering Method Analysis for Gene Expression Data using Fire Fly Optimization and Simple K-means Algorithm with Machine Learning;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3