Metabolic disassembler for understanding and predicting the biosynthetic units of natural products

Author:

Amano Kohei,Matsumoto Tsubasa,Tanaka Kenichi,Funatsu Kimito,Kotera MasaakiORCID

Abstract

Abstract Background Natural products are the source of various functional materials such as medicines, and understanding their biosynthetic pathways can provide information that is helpful for their effective production through the synthetic biology approach. A number of studies have aimed to predict biosynthetic pathways from their chemical structures in a retrosynthesis manner; however, sometimes the calculation finishes without reaching the starting material from the target molecule. In order to address this problem, the method to find suitable starting materials is required. Results In this study, we developed a predictive workflow named the Metabolic Disassembler that automatically disassembles the target molecule structure into relevant biosynthetic units (BUs), which are the substructures that correspond to the starting materials in the biosynthesis pathway. This workflow uses a biosynthetic unit library (BUL), which contains starting materials, key intermediates, and their derivatives. We obtained the starting materials from the KEGG PATHWAY database, and 765 BUs were registered in the BUL. We then examined the proposed workflow to optimize the combination of the BUs. To evaluate the performance of the proposed Metabolic Disassembler workflow, we used 943 molecules that are included in the secondary metabolism maps of KEGG PATHWAY. About 95.8% of them (903 molecules) were correctly disassembled by our proposed workflow. For comparison, we also implemented a genetic algorithm-based workflow, and found that the accuracy was only about 52.0%. In addition, for 90.7% of molecules, our workflow finished the calculation within one minute. Conclusions The Metabolic Disassembler enabled the effective disassembly of natural products in terms of both correctness and computational time. It also outputs automatically highlighted color-coded substructures corresponding to the BUs to help users understand the calculation results. The users do not have to specify starting molecules in advance, and can input any target molecule, even if it is not in databases. Our workflow will be very useful for understanding and predicting the biosynthesis of natural products.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3