TIDD: tool-independent and data-dependent machine learning for peptide identification

Author:

Li Honglan,Na Seungjin,Hwang Kyu-Baek,Paek Eunok

Abstract

Abstract Background In shotgun proteomics, database search engines have been developed to assign peptides to tandem mass (MS/MS) spectra and at the same time post-processing (or rescoring) approaches over the search results have been proposed to increase the number of confident peptide identifications. The most popular post-processing approaches such as Percolator and PeptideProphet have improved rates of peptide identifications by combining multiple scores from database search engines while applying machine learning techniques. Existing post-processing approaches, however, are limited when dealing with results from new search engines because their features for machine learning must be optimized specifically for each search engine. Results We propose a universal post-processing tool, called TIDD, which supports confident peptide identifications regardless of the search engine adopted. TIDD can work for any (including newly developed) search engines because it calculates universal features that assess peptide-spectrum match quality while it allows additional features provided by search engines (or users) as well. Even though it relies on universal features independent of search tools, TIDD showed similar or better performance than Percolator in terms of peptide identification. TIDD identified 10.23–38.95% more PSMs than target-decoy estimation for MSFragger, which is not supported by Percolator. TIDD offers an easy-to-use simple graphical user interface for user convenience. Conclusions TIDD successfully eliminated the requirement for an optimal feature engineering per database search tool, and thus, can be applied directly to any database search results including newly developed ones.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics;Computational and Structural Biotechnology Journal;2023

2. FineFDR: Fine-grained Taxonomy-specific False Discovery Rates Control in Metaproteomics;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3