Computationally identifying hot spots in protein-DNA binding interfaces using an ensemble approach

Author:

Pan Yuliang,Zhou Shuigeng,Guan Jihong

Abstract

Abstract Background Protein-DNA interaction governs a large number of cellular processes, and it can be altered by a small fraction of interface residues, i.e., the so-called hot spots, which account for most of the interface binding free energy. Accurate prediction of hot spots is critical to understand the principle of protein-DNA interactions. There are already some computational methods that can accurately and efficiently predict a large number of hot residues. However, the insufficiency of experimentally validated hot-spot residues in protein-DNA complexes and the low diversity of the employed features limit the performance of existing methods. Results Here, we report a new computational method for effectively predicting hot spots in protein-DNA binding interfaces. This method, called PreHots (the abbreviation of Predicting Hotspots), adopts an ensemble stacking classifier that integrates different machine learning classifiers to generate a robust model with 19 features selected by a sequential backward feature selection algorithm. To this end, we constructed two new and reliable datasets (one benchmark for model training and one independent dataset for validation), which totally consist of 123 hot spots and 137 non-hot spots from 89 protein-DNA complexes. The data were manually collected from the literature and existing databases with a strict process of redundancy removal. Our method achieves a sensitivity of 0.813 and an AUC score of 0.868 in 10-fold cross-validation on the benchmark dataset, and a sensitivity of 0.818 and an AUC score of 0.820 on the independent test dataset. The results show that our approach outperforms the existing ones. Conclusions PreHots, which is based on stack ensemble of boosting algorithms, can reliably predict hot spots at the protein-DNA binding interface on a large scale. Compared with the existing methods, PreHots can achieve better prediction performance. Both the webserver of PreHots and the datasets are freely available at: http://dmb.tongji.edu.cn/tools/PreHots/.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3