GECO: gene expression clustering optimization app for non-linear data visualization of patterns

Author:

Habowski A. N.ORCID,Habowski T. J.,Waterman M. L.

Abstract

Abstract Background Due to continued advances in sequencing technology, the limitation in understanding biological systems through an “-omics” lens is no longer the generation of data, but the ability to analyze it. Importantly, much of this rich -omics data is publicly available waiting to be further investigated. Although many code-based pipelines exist, there is a lack of user-friendly and accessible applications that enable rapid analysis or visualization of data. Results GECO (Gene Expression Clustering Optimization; http://www.theGECOapp.com) is a minimalistic GUI app that utilizes non-linear reduction techniques to rapidly visualize expression trends in many types of biological data matrices (such as bulk RNA-seq or proteomics). The required input is a data matrix with samples and any type of expression level of genes/protein/other with a unique ID. The output is an interactive t-SNE or UMAP analysis that clusters genes (or proteins/other unique IDs) based on their expression patterns across the multiple samples enabling visualization of expression trends. Customizable settings for dimensionality reduction, data normalization, along with visualization parameters including coloring and filters, ensure adaptability to a variety of user uploaded data. Conclusion This local and cloud-hosted web browser app enables investigation of any -omic data matrix in a rapid and code-independent manner. With the continued growth of available -omic data, the ability to quickly evaluate a dataset, including specific genes of interest, is more important than ever. GECO is intended to supplement traditional statistical analysis methods and is particularly useful when visualizing clusters of genes with similar trajectories across many samples (ex: multiple cell types, time course, dose response). Users will be empowered to investigate -omic data with a new lens of visualization and analysis that has the potential to uncover genes of interest, cohorts of co-regulated genes programs, and previously undetected patterns of expression.

Funder

National Science Foundation

National Cancer Institute

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3