Transfer learning for genotype–phenotype prediction using deep learning models

Author:

Muneeb Muhammad,Feng Samuel,Henschel Andreas

Abstract

Abstract Background For some understudied populations, genotype data is minimal for genotype-phenotype prediction. However, we can use the data of some other large populations to learn about the disease-causing SNPs and use that knowledge for the genotype-phenotype prediction of small populations. This manuscript illustrated that transfer learning is applicable for genotype data and genotype-phenotype prediction. Results Using HAPGEN2 and PhenotypeSimulator, we generated eight phenotypes for 500 cases/500 controls (CEU, large population) and 100 cases/100 controls (YRI, small populations). We considered 5 (4 phenotypes) and 10 (4 phenotypes) different risk SNPs for each phenotype to evaluate the proposed method. The improved accuracy with transfer learning for eight different phenotypes was between 2 and 14.2 percent. The two-tailed p-value between the classification accuracies for all phenotypes without transfer learning and with transfer learning was 0.0306 for five risk SNPs phenotypes and 0.0478 for ten risk SNPs phenotypes. Conclusion The proposed pipeline is used to transfer knowledge for the case/control classification of the small population. In addition, we argue that this method can also be used in the realm of endangered species and personalized medicine. If the large population data is extensive compared to small population data, expect transfer learning results to improve significantly. We show that Transfer learning is capable to create powerful models for genotype-phenotype predictions in large, well-studied populations and fine-tune these models to populations were data is sparse.

Funder

Khalifa University of Science, Technology and Research

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3