Author:
Wang Rongquan,Wang Caixia,Ma Huimin
Abstract
AbstractBackgroundAccurate identification of protein complexes in protein-protein interaction (PPI) networks is crucial for understanding the principles of cellular organization. Most computational methods ignore the fact that proteins in a protein complex have a functional similarity and are co-localized and co-expressed at the same place and time, respectively. Meanwhile, the parameters of the current methods are specified by users, so these methods cannot effectively deal with different input PPI networks.ResultTo address these issues, this study proposes a new method called MP-AHSA to detect protein complexes with Multiple Properties (MP), and an Adaptation Harmony Search Algorithm is developed to optimize the parameters of the MP algorithm. First, a weighted PPI network is constructed using functional annotations, and multiple biological properties and the Markov cluster algorithm (MCL) are used to mine protein complex cores. Then, a fitness function is defined, and a protein complex forming strategy is designed to detect attachment proteins and form protein complexes. Next, a protein complex filtering strategy is formulated to filter out the protein complexes. Finally, an adaptation harmony search algorithm is developed to determine the MP algorithm’s parameters automatically.ConclusionsExperimental results show that the proposed MP-AHSA method outperforms 14 state-of-the-art methods for identifying protein complexes. Also, the functional enrichment analyses reveal that the protein complexes identified by the MP-AHSA algorithm have significant biological relevance.
Funder
Fundamental Research Funds for the Central Universities
R&D Program of CAAC Key Laboratory of Flight Techniques and Flight Safety
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献