A novel computational strategy for DNA methylation imputation using mixture regression model (MRM)

Author:

Yu Fangtang,Xu Chao,Deng Hong-Wen,Shen Hui

Abstract

Abstract Background DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. Results We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. Conclusions Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3