Effective type label-based synergistic representation learning for biomedical event trigger detection

Author:

Hao Anran,Yuan Haohan,Hui Siu Cheung,Su Jian

Abstract

Abstract Background Detecting event triggers in biomedical texts, which contain domain knowledge and context-dependent terms, is more challenging than in general-domain texts. Most state-of-the-art models rely mainly on external resources such as linguistic tools and knowledge bases to improve system performance. However, they lack effective mechanisms to obtain semantic clues from label specification and sentence context. Given its success in image classification, label representation learning is a promising approach to enhancing biomedical event trigger detection models by leveraging the rich semantics of pre-defined event type labels. Results In this paper, we propose the Biomedical Label-based Synergistic representation Learning (BioLSL) model, which effectively utilizes event type labels by learning their correlation with trigger words and enriches the representation contextually. The BioLSL model consists of three modules. Firstly, the Domain-specific Joint Encoding module employs a transformer-based, domain-specific pre-trained architecture to jointly encode input sentences and pre-defined event type labels. Secondly, the Label-based Synergistic Representation Learning module learns the semantic relationships between input texts and event type labels, and generates a Label-Trigger Aware Representation (LTAR) and a Label-Context Aware Representation (LCAR) for enhanced semantic representations. Finally, the Trigger Classification module makes structured predictions, where each label is predicted with respect to its neighbours. We conduct experiments on three benchmark BioNLP datasets, namely MLEE, GE09, and GE11, to evaluate our proposed BioLSL model. Results show that BioLSL has achieved state-of-the-art performance, outperforming the baseline models. Conclusions The proposed BioLSL model demonstrates good performance for biomedical event trigger detection without using any external resources. This suggests that label representation learning and context-aware enhancement are promising directions for improving the task. The key enhancement is that BioLSL effectively learns to construct semantic linkages between the event mentions and type labels, which provide the latent information of label-trigger and label-context relationships in biomedical texts. Moreover, additional experiments on BioLSL show that it performs exceptionally well with limited training data under the data-scarce scenarios.

Funder

Agency for Science, Technology and Research, Singapore

Publisher

Springer Science and Business Media LLC

Reference70 articles.

1. Wang XD, Leser U, Weber L. Beeds: large-scale biomedical event extraction using distant supervision and question answering. In: Proceedings of the 21st workshop on biomedical language processing; 2022. p. 298–309.

2. Kim J-D, Wang Y, Takagi T, Yonezawa A. Overview of genia event task in bionlp shared task 2011. In: Proceedings of BioNLP shared task 2011 workshop; 2011. p. 7–15.

3. Pyysalo S, Ohta T, Miwa M, Cho H-C, Tsujii J, Ananiadou S. Event extraction across multiple levels of biological organization. Bioinformatics. 2012;28(18):575–81.

4. Kim J-D, Wang Y, Yasunori Y. The genia event extraction shared task, 2013 edition-overview. In: Proceedings of the BioNLP shared task 2013 workshop; 2013. p. 8–15.

5. Pyysalo S, Ohta T, Rak R, Rowley A, Chun H-W, Jung S-J, Choi S-P, Tsujii J, Ananiadou S. Overview of the cancer genetics and pathway curation tasks of bionlp shared task 2013. BMC Bioinform. 2015;16(10):1–19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3