Enhancement of therapeutic efficacy of Brinzolamide for Glaucoma by nanocrystallization and tyloxapol addition

Author:

Masuda Shuya,Yano Shiho,Tadokoro Tomohisa,Otake Hiroko,Nagai NoriakiORCID

Abstract

Abstract Background Brinzolamide (BRI) suspensions are used for the treatment of glaucoma; however, sufficient drug delivery to the target tissue after eye drop administration is hampered by poor solubility. To address this issue, we focused on nanocrystal technology, which is expected to improve the bioavailability of poor-solubility drugs, and investigated the effect of BRI nanocrystal formulations on corneal permeability and intraocular pressure (IOP)-reducing effect. Methods BRI nanocrystal formulations were prepared by the wet-milling method with beads and additives. The particle size was measured by NANOSIGHT LM10, and the morphology was determined using a scanning probe microscope (SPM-9700) and a scanning electron microscope (SEM). Corneal permeability was evaluated in vitro using a Franz diffusion cell with rat corneas and in vivo using rabbits, and the IOP-reducing effect was investigated using a rabbit hypertensive model. Results The particle size range for prepared BRI nanocrystal formulation was from 50 to 300 nm and the mean particle size was 135 ± 4 nm. The morphology was crystalline, and the nanoparticles were uniformly dispersed. In the corneal permeability study, BRI nanocrystallization exhibited higher corneal permeability than non-milled formulations. This result may be attributed to the increased solubility of BRI by nanocrystallization and the induction of energy-dependent endocytosis by the attachment of BRI nanoparticles to the cell membrane. Furthermore, the addition of tyloxapol to BRI nanocrystal formulation further improved the intraocular penetration of BRI and showed a stronger IOP-reducing effect than the commercial product. Conclusions The combination of BRI nanocrystallization and tyloxapol is expected to be highly effective in glaucoma treatment and a useful tool for new ophthalmic drug delivery.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3