Radial-based acquisition strategies for pre-procedural non-contrast cardiovascular magnetic resonance angiography of the pulmonary veins

Author:

Aouad Pascale,Koktzoglou Ioannis,Milani Bastien,Serhal Ali,Nazari Jose,Edelman Robert R.ORCID

Abstract

Abstract Background Computed tomography angiography (CTA) or contrast-enhanced (CE) cardiovascular magnetic resonance angiography (CMRA) is often obtained in patients with atrial fibrillation undergoing evaluation prior to pulmonary vein (PV) isolation. Drawbacks of CTA include radiation exposure and potential risks from iodinated contrast agent administration. Free-breathing 3D balanced steady-state free precession (bSSFP) Non-contrast CMRA is a potential imaging option, but vascular detail can be suboptimal due to ghost artifacts and blurring that tend to occur with a Cartesian k-space trajectory or, in some cases, inconsistent respiratory gating. We therefore explored the potential utility of both breath-holding and free-breathing non-contrast CMRA, using radial k-space trajectories that are known to be less sensitive to flow and motion artifacts than Cartesian. Main body Free-breathing 3D Cartesian and radial stack-of-stars acquisitions were compared in 6 healthy subjects. In addition, 27 patients underwent CTA and non-contrast CMRA for PV mapping. Three radial CMR acquisition strategies were tested: (1) breath-hold (BH) 2D radial bSSFP (BH-2D); (2) breath-hold, multiple thin-slab 3D stack-of-stars bSSFP (BH-SOS); and (3) navigator-gated free-breathing (FB) 3D stack-of-star bSSFP using a spatially non-selective RF excitation (FB-NS-SOS). A non-rigid registration algorithm was used to compensate for variations in breath-hold depth. In healthy subjects, image quality and vessel sharpness using a free-breathing 3D SOS acquisition was significantly better than free-breathing (FB) Cartesian 3D. In patients, diagnostic image quality was obtained using all three radial CMRA techniques, with BH-SOS and FB-NS-SOS outperforming BH-2D. There was overall good correlation for PV maximal diameter between BH-2D and CTA (ICC = 0.87/0.83 for the two readers), excellent correlation between BH-SOS and CTA (ICC = 0.90/0.91), and good to excellent correlation between FB-NS-SOS and CTA (ICC = 0.87/0.94). For PV area, there was overall good correlation between BH-2D and CTA (ICC = 0.79/0.83), good to excellent correlation between BH-SOS and CTA (ICC = 0.88/0.91) and excellent correlation between FB-NS-SOS and CTA (ICC = 0.90/0.95). CNR was significantly higher with BH-SOS (mean = 11.04) by comparison to BH-2D (mean = 6.02; P = 0.007) and FB-NS-SOS (mean = 5.29; P = 0.002). Conclusion Our results suggest that a free-breathing stack-of-stars bSSFP technique is advantageous in providing accurate depiction of PV anatomy and ostial measurements without significant degradation from off-resonance artifacts, and with better image quality than Cartesian 3D. For patients in whom respiratory gating is unsuccessful, a breath-hold thin-slab stack-of-stars technique with retrospective motion correction may be a useful alternative.

Funder

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference24 articles.

1. Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med. 1995;98(5):476–84. https://doi.org/10.1016/S0002-9343(99)80348-9.

2. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, et al. Heart Rhythm Society Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Heart Rhythm. 2012;9:632-696.e21. https://doi.org/10.1016/j.hrthm.2011.12.016.

3. Hamdan A, Charalampos K, Roettgen R, et al. Magnetic resonance imaging versus computed tomography for characterization of pulmonary vein morphology before radiofrequency catheter ablation of atrial fibrillation. Am J Cardiol. 2009;104(11):1540–6. https://doi.org/10.1016/j.amjcard.2009.07.029 ((epub 2009 Oct 14)).

4. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007;242:3647–9.

5. Schonberger M, Usman A, Galizia M, Popescu A, Collins J, Carr JC. Time-resolved MR venography of the pulmonary veins precatheter-based ablation for atrial fibrillation. J Magn Reson Imaging. 2013;37(1):127–37. https://doi.org/10.1002/jmri.23808 ((epub 2012 Sep 20)).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3