ROTI Keograms based on CMONOC to characterize the ionospheric irregularities in 2014

Author:

Li JinghuaORCID,Ma Guanyi,Maruyama Takashi,Wan Qingtao,Fan Jiangtao,Zhang Jie,Wang Xiaolang

Abstract

AbstractIonospheric irregularities have been studied since ~ 70 years ago. With the development of Global Navigation Satellite system (GNSS), networks of GNSS receivers have been used to obtain the characteristics of the irregularities, including the drift velocity, the structure, and the evolution. In this paper, keograms based on the Crustal Movement Observation Network of China (CMONOC) were used to characterize the irregularities over the area from longitude 85 to 125 °E and latitude 11 to 35 °N in 2014. Keograms were obtained for the rate of TEC index (ROTI) for every 0.5 degree longitude and 30 min universal time pixel. The results showed that the occurrence rate of irregularities in 2014 was high in the equinox months and December, and lowest in June. In equinox months the irregularities often appeared after sunset. In March the irregularities usually had long lifetime of ~ 5–7 h and ~ 5 degrees apparent longitudinal width. The long lifetime usually was accompanied by obvious eastward drift of ~ 100 m/s and large vertical ROTI (vROTI). In September the irregularities had weaker ROTI and shorter lifetime than those in March. The irregularities in the 2 equinox months should be related to the equatorial plasma bubbles (EPBs). In June, they appeared ~ 2–3 h later than those in equinoxes and drifted westward. The summer irregularities had weakest ROTI and their latitude was ~ 30 °N, much higher than those in equinoxes. In December, the irregularities were discrete patches with a longitudinal width of ~ 2 degrees and short lifetime of ~ 2 h. Unlike the equatorial irregularities in equinox months which are part of equatorial plasma bubbles, the solstice irregularities mainly appear to be a local phenomenon. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3