Global marine gravity anomalies from multi-satellite altimeter data

Author:

Wan Xiaoyun,Hao Ruijie,Jia Yongjun,Wu Xing,Wang Yi,Feng Lei

Abstract

AbstractIn this study, China’s first altimeter satellite Haiyang-2A (HY-2A) data combined observations from CryoSat-2, SARAL/AltiKa, and Jason-1&2 are used to calculate the global (60°S–60°N) marine deflections of the vertical and gravity anomalies named Global Marine Gravity Anomaly Version 1(GMGA1), with grid resolution of 1′ × 1′. The deflections of the vertical from each satellite observations are first derived from the gradients of the geoid height through the least squares method. The deflections of the vertical are then merged by assigning different weights to each satellite product based on their accuracy. Finally, gravity anomalies are obtained by the remove-restore method. The results reveal that the fused deflections of the vertical have an accuracy of 0.4 arcsec in the north component and 0.8 arcsec in the east component. HY-2A’s contribution to the north component of the integrated deflections of the vertical is second only to Cryosat-2. Jason-1/2 accounts for a large proportion of the integrated east components. Compared to worldwide products such as DTU17, Sandwell & Smith V31.1, as well as values from EGM2008, EIGEN-6C4 and XGM2019e_2159, GMGA1 has an accuracy of around 3.3 mGal. By not using HY-2A data, the precision of GMGA1 is reduced by about 0.1 mGal. To further improve the accuracy, seafloor topography information is used to provide short wavelength gravity anomaly. It is verified in the South China Sea (112°E–119E°, 12°N–20°N) using the Parker formula. By combining shipborne depth generated data and GMGA1 through a filtering technique, a new version of gravity anomaly grid with an accuracy improvement of 0.4 mGal in the South China Sea is obtained. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3