Current active fault distribution and slip rate along the middle section of the Jiali-Chayu fault from Sentinel-1 InSAR observations (2017–2022)

Author:

Yao Jiaming,Yao Xin,Wang Yanbing,Zhao Zheng,Liu Xinghong

Abstract

AbstractThe Jiali-Chayu fault, situated on the eastern side of the eastern Himalayan syntaxis, is the southeastern margin of the large strike-slip fault zone of the Jiali Fault. The study of the distribution and activity within this fault zone is imperative for a comprehensive understanding of the tectonic movement patterns in the southeastern Tibetan Plateau. Previous studies have established that the kinematic characteristic of the Jiali-Chayu fault diverges significantly from that of other segments within the Jiali fault. Nonetheless, the current tectonic characteristics, including the slip sense, slip rate, and geometric deformation of this fault, are still not well resolved, leading to divergent interpretations regarding its contemporary activity intensity. This paper introduced an optimized time-series InSAR method with phase compensation designed for regions characterized by low coherence and exhibiting slow deformation. Using Sentinel-1 SAR data from both ascending and descending orbits spanning the period between 2017 and 2022, we successfully derived deformation rates for the middle part of the Jiali-Chayu fault at a spatial resolution of 150 m. The slip and dip rates of active faults are determined by considering the fault movement rates from two different observation angles, in conjunction with strike angle and the assumed dip angle of the fault. The results show that the deformation rates of the three branches are very different, with F2-1 and F2-2 exhibiting notable activity, while other areas exhibit relatively weaker activity. The strike-slip rates for F2-1 and F2-2 faults range between 3.6 and 5.3 mm/a and 3.05 to 5.13 mm/a, respectively, while their respective dip-slip rates fall within the range of 1.1–2.7 mm/a and 2.99–5.02 mm/a. In accordance with the fault slip directions, we classify the F2-1 fault as a sinistral (left-lateral) strike-slip fault and the F2-2 fault as a dextral (right-lateral) strike-slip fault. This study addresses a gap in remote sensing methods for detecting active fault activity in this region, providing a systematic foundation for identifying weak activity characteristics within the fault zone. Graphical Abstract

Funder

Science and Technology Foundation of State Grid Corporation of China

China Geological Survey, Ministry of Natural Resources

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3