Shear wave splitting and seismic velocity structure in the focal area of the earthquake swarm and their relation with earthquake swarm activity in the Noto Peninsula, central Japan

Author:

Okada TomomiORCID,Savage Martha K.,Sakai Shin’ichi,Yoshida Keisuke,Uchida Naoki,Takagi Ryota,Kimura Shuutoku,Hirahara Satoshi,Tagami Ayaka,Fujimura Ryotaro,Matsuzawa Toru,Kurashimo Eiji,Hiramatsu Yoshihiro

Abstract

AbstractSeismic activity in the Noto region of Ishikawa Prefecture, central Japan, has increased since August 2020 and has continued as of August 2023. Stress changes due to subsurface sources and increases in fluid pressure have been discussed as the causes of the seismic activity increase. In this study, S-wave polarization anisotropy was investigated by S-wave splitting analysis using temporary and permanent stations located in the epicenter area. We also investigated the seismic wave velocity structure in the source region by analyzing seismic wave velocity tomography. The fast orientations of anisotropy (fast shear wave oscillation direction, FSOD) were generally NW–SE in the southern part of the focal area and east–west in the northern part. The NW–SE anisotropy generally coincides with the direction of the maximum horizontal compression axis, both near the surface and at earthquake depths. Therefore, stress-induced anisotropy can be the cause of the observed NW–SE anisotropy. On the other hand, faults with strike directions generally east–west have been identified, and structural anisotropy may be the cause of the observed east–west anisotropy. We examined the time variation of anisotropy at N.SUZH, one of the permanent stations. No significant time variation was observed in the FSOD. Larger anisotropy was observed, particularly for the activity in the western part of the focal area, from about June–September 2021 compared to the previous period. A high Vp/Vs region was identified beneath the focal area, at a depth of 18 km. This high Vp/Vs region has slightly larger P-wave velocities than the surrounding area. Since Tertiary igneous rocks are distributed in the target area, the high Vp/Vs region may represent a Tertiary magma reservoir, suggesting that fluids released through the old magma reservoir are involved in this seismic swarm. This seismic activity started in the southern part of the area, where relatively immature fault structure exists, where stress-induced anisotropy is distributed, and where high Vp/Vs regions suggestive of fluid at depth are identified. Subsequently, seismicity became more active in the northern part, where structural anisotropy with well-developed fault structures is distributed. Graphical Abstract

Funder

MEXT

Observation and Research Program for Prediction of Earthquakes and Volcanic Eruptions

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3