Abstract
AbstractWe herein propose an alternative model for deformation caused by an eruption at Sakurajima, which has been previously interpreted as being due to a Mogi-type spherical point source beneath Minami-dake. On November 13, 2017, a large explosion with a plume height of 4200 m occurred at Minami-dake. During the 3 min following the onset of the explosion (November 13, 2017, 22:07–22:10 (Japan standard time (UTC + 9); the same hereinafter), phase 1, a large strain with changes up to 120 nstrain was detected at the Arimura observation tunnel (AVOT) located approximately 2.1 km southeast from the Minami-dake crater. After the peak of the explosion (November 13, 2017, 22:10–24:00), phase 2, a large deflation was detected at every monitoring station due to the continuous Strombolian eruption. Subsidence toward Minami-dake was detected at five out of six stations, whereas subsidence toward the north of Sakurajima was detected at the newly installed Komen observation tunnel (KMT), located approximately 4.0 km northeast from the Minami-dake crater. The large strain change at AVOT as well as small tilt changes at all stations and small strain changes at the Harutayama observation tunnel (HVOT) and KMT during phase 1 can be explained by a very shallow deflation source beneath Minami-dake at 0.1 km below sea level (bsl). For phase 2, a deeper deflation source beneath Minami-dake at a depth of 3.3 km bsl was found in addition to the shallow source beneath Minami-dake, which turned inflation after the deflation that occurred during phase 1. However, this model cannot explain the tilt change of KMT. Adding a spherical deflation source beneath Kita-dake at a depth of 3.2 km bsl can explain the tilt and strain change at KMT and the other stations. The Kita-dake source was also found in a previous study of long-term ground deformation. Not only the deeper Minami-dake source MD, but also the Kita-dake source deflated due to the Minami-dake explosion.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Ministry of Land, Infrastructure, Transport and Tourism
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献