Graph representation learning-based residential electricity behavior identification and energy management

Author:

Chen Xinpei,Yu Tao,Pan ZhenningORCID,Wang Zihao,Yang Shengchun

Abstract

AbstractIt is important to achieve an efficient home energy management system (HEMS) because of its role in promoting energy saving and emission reduction for end-users. Two critical issues in an efficient HEMS are identification of user behavior and energy management strategy. However, current HEMS methods usually assume perfect knowledge of user behavior or ignore the strong correlations of usage habits with different applications. This can lead to an insufficient description of behavior and suboptimal management strategy. To address these gaps, this paper proposes non-intrusive load monitoring (NILM) assisted graph reinforcement learning (GRL) for intelligent HEMS decision making. First, a behavior correlation graph incorporating NILM is introduced to represent the energy consumption behavior of users and a multi-label classification model is used to monitor the loads. Thus, efficient identification of user behavior and description of state transition can be achieved. Second, based on the online updating of the behavior correlation graph, a GRL model is proposed to extract information contained in the graph. Thus, reliable strategy under uncertainty of environment and behavior is available. Finally, the experimental results on several datasets verify the effectiveness of the proposed model.

Funder

State Grid Corporation of China Project “Research on Coordinated Strategy of Multi-type Controllable Resources Based on Collective Intelligence in an Energy”

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3