Deep learning models of ultrasonography significantly improved the differential diagnosis performance for superficial soft-tissue masses: a retrospective multicenter study

Author:

Long Bin,Zhang Haoyan,Zhang Han,Chen Wen,Sun Yang,Tang Rui,Lin Yuxuan,Fu Qiang,Yang Xin,Cui Ligang,Wang KunORCID

Abstract

Abstract Background Most of superficial soft-tissue masses are benign tumors, and very few are malignant tumors. However, persistent growth, of both benign and malignant tumors, can be painful and even life-threatening. It is necessary to improve the differential diagnosis performance for superficial soft-tissue masses by using deep learning models. This study aimed to propose a new ultrasonic deep learning model (DLM) system for the differential diagnosis of superficial soft-tissue masses. Methods Between January 2015 and December 2022, data for 1615 patients with superficial soft-tissue masses were retrospectively collected. Two experienced radiologists (radiologists 1 and 2 with 8 and 30 years’ experience, respectively) analyzed the ultrasound images of each superficial soft-tissue mass and made a diagnosis of malignant mass or one of the five most common benign masses. After referring to the DLM results, they re-evaluated the diagnoses. The diagnostic performance and concerns of the radiologists were analyzed before and after referring to the results of the DLM results. Results In the validation cohort, DLM-1 was trained to distinguish between benign and malignant masses, with an AUC of 0.992 (95% CI: 0.980, 1.0) and an ACC of 0.987 (95% CI: 0.968, 1.0). DLM-2 was trained to classify the five most common benign masses (lipomyoma, hemangioma, neurinoma, epidermal cyst, and calcifying epithelioma) with AUCs of 0.986, 0.993, 0.944, 0.973, and 0.903, respectively. In addition, under the condition of the DLM-assisted diagnosis, the radiologists greatly improved their accuracy of differential diagnosis between benign and malignant tumors. Conclusions The proposed DLM system has high clinical application value in the differential diagnosis of superficial soft-tissue masses.

Funder

National Natural Science Foundation of China

Peking University Third Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3