Sodium-Calcium Exchangers in Rat Trigeminal Ganglion Neurons

Author:

Kuroda Hidetaka123,Sobhan Ubaidus1,Sato Masaki1,Tsumura Maki13,Ichinohe Tatsuya2,Tazaki Masakazu3,Shibukawa Yoshiyuki13

Affiliation:

1. Oral Health Science Center hrc8, Tokyo Dental College, Tokyo 261-8502, Japan

2. Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 261-8502, Japan

3. Department of Physiology, Tokyo Dental College, Tokyo 261-8502, Japan

Abstract

Background Noxious stimulation and nerve injury induce an increase in intracellular Ca2+ concentration ([Ca2+]i) via various receptors or ionic channels. While an increase in [Ca2+]i excites neurons, [Ca2+]i overload elicits cytotoxicity, resulting in cell death. Intracellular Ca2+ is essential for many signal transduction mechanisms, and its level is precisely regulated by the Ca2+ extrusion system in the plasma membrane, which includes the Na+-Ca2+ exchanger (NCX). It has been demonstrated that Ca2+-ATPase is the primary mechanism for removing [Ca2+]i following excitatory activity in trigeminal ganglion (TG) neurons; however, the role of NCXs in this process has yet to be clarified. The goal of this study was to examine the expression/localization of NCXs in TG neurons and to evaluate their functional properties. Results NCX isoforms (NCX1, NCX2, and NCX3) were expressed in primary cultured rat TG neurons. All the NCX isoforms were also expressed in A-, peptidergic C-, and non-peptidergic C-neurons, and located not only in the somata, dendrites, axons and perinuclear region, but also in axons innervating the dental pulp. Reverse NCX activity was clearly observed in TG neurons. The inactivation kinetics of voltage-dependent Na+ channels were prolonged by NCX inhibitors when [Ca2+]i in TG neurons was elevated beyond physiological levels. Conclusions Our results suggest that NCXs in TG neurons play an important role in regulating Ca2+-homeostasis and somatosensory information processing by functionally coupling with voltage-dependent Na+ channels.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3