Abstract
Abstract
Background
The mechanism of histone deacetylase 3 (HDAC3) in colorectal cancer (CRC) has already been discussed. However, the feedback loop of HDAC3/microRNA (miR)-296-3p and transforming growth factor β-induced factor 1 (TGIF1) in CRC has not been explained clearly. Thus, the mainstay of this study is to delve out the mechanism of this axis in CRC.
Methods
To demonstrate that HDAC3 regulates the miR-296-3p/TGIF1/TGFβ axis and is involved in CRC progression, a series of cell biological, molecular and biochemical approaches were conducted from the clinical research level, in vitro experiments and in vivo experiments. These methods included RT-qPCR, Western blot assay, cell transfection, MTT assay, EdU assay, flow cytometry, scratch test, Transwell assay, dual luciferase reporter gene assay, chromatin immunoprecipitation, nude mouse xenograft, H&E staining and TUNEL staining.
Results
Higher HDAC3 and TGIF1 and lower miR-296-3p expression levels were found in CRC tissues. HDAC3 was negatively connected with miR-296-3p while positively correlated with TGIF1, and miR-296-3p was negatively connected with TGIF1. Depleted HDAC3 elevated miR-296-3p expression and reduced TGIF1 expression, decreased TGFβ pathway-related proteins, inhibited CRC proliferation, invasion, and migration in vitro and slowed down tumor growth and induction of apoptosis in vivo, which were reversed by miR-296-3p knockdown. Restored miR-296-3p suppressed TGIF1 and reduced TGFβ pathway-related proteins, inhibited CRC proliferation, invasion, and migration in vitro and slowed down tumor growth and induction of apoptosis in vivo, which were reversed by TGIF1 overexpression.
Conclusion
This study illustrates that down-regulation of HDAC3 or TGIF1 or up-regulation of miR-296-3p discourages CRC cell progression and slows down tumor growth, which guides towards a novel direction of CRC treatment.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献