Author:
Chen Lingjun,Lin Xianyi,Lei Yiming,Xu Xuan,Zhou Qi,Chen Yan,Liu Huiling,Jiang Jie,Yang Yidong,Zheng Fengping,Wu Bin
Abstract
Abstract
Background
Aerobic glycolysis has been recognized as one of the growth-promoting metabolic alterations of cancer cells. Emerging evidence indicates that nuclear factor κB (NF-κB) plays significant roles in metabolic adaptation in normal cells and cancer cells. However, whether and how NF-κB regulates metabolic reprogramming in hepatocellular carcinoma (HCC), specifically hepatitis B virus X protein (HBx)-initiated HCC, has not been determined.
Methods
A dataset of the HCC cohort from the TCGA database was used to analyse the expression of NF-κB family members. Expression of NF-κBp65 and phosphorylation of NF-κBp65 (p-p65) were detected in liver tissues from HBV-related HCC patients and normal controls. A newly established HBx+/+/NF-κBp65f/f and HBx+/+/NF-κBp65Δhepa spontaneous HCC mouse model was used to investigate the effects of NF-κBp65 on HBx-initiated hepatocarcinogenesis. Whether and how NF-κBp65 is involved in aerobic glycolysis induced by HBx in hepatocellular carcinogenesis were analysed in vitro and in vivo.
Results
NF-κBp65 was upregulated in HBV-related HCC, and HBx induced NF-κBp65 upregulation and phosphorylation in vivo and in vitro. Hepatocyte-specific NF-κBp65 deficiency remarkably decreased HBx-initiated spontaneous HCC incidence in HBx-TG mice. Mechanistically, HBx induced aerobic glycolysis by activating NF-κBp65/hexokinase 2 (HK2) signalling in spontaneous hepatocarcinogenesis, and overproduced lactate significantly promoted HCC cell pernicious proliferation via the PI3K (phosphatidylinositide 3-kinase)/Akt pathway in hepatocarcinogenesis.
Conclusion
The data elucidate that NF-κBp65 plays a pivotal role in HBx-initiated spontaneous HCC, which depends on hyperactive NF-κBp65/HK2-mediated aerobic glycolysis to activate PI3K/Akt signalling. Thus, phosphorylation of NF-κBp65 will be a potential therapeutic target for HBV-related HCC.
Funder
Natural Science Foundation of Guangdong Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献