Forkhead box (FOX) G1 promotes hepatocellular carcinoma epithelial-Mesenchymal transition by activating Wnt signal through forming T-cell factor-4/Beta-catenin/FOXG1 complex

Author:

Zheng Xingrong,Lin Jiaxin,Wu Hewei,Mo Zhishuo,Lian Yunwen,Wang Peipei,Hu Zhaoxia,Gao Zhiliang,Peng Liang,Xie ChanORCID

Abstract

Abstract Background Forkhead box G1 (FOXG1) is a member of the Fox transcription factor family involved in regulation of many cancers. However, the role of FOXG1 in hepatocellular carcinogenesisis largely unclear. The present study aimed at examining the biological function and underlying mechanism of FOXG1 on hepatocellular carcinoma (HCC) tumor metastasis as well as its clinical significance. Methods Levels of FOXG1 were determined by immunohistochemical and real-time PCR analysis in HCC cell lines and human HCC samples. The effect of FOXG1 on cancer cell invasion and metastasis was investigated in vitro and in vivo in either FOXG1-silenced or overexpressing human HCC cell lines. Immunoprecipitation and chromatin immunoprecipitation assays were performed to investigate the interaction of FOXG1, β-catenin, TCF4 and the effect on Wnt target-gene promoters. Results In human HCC, the level of FOXG1 progressively increased from surrounding non tumorous livers to HCC, reaching the highest levels in metastatic HCC. Furthermore, expression levels of FOXG1 directly correlated with cancer cell epithelial-mesenchymal transition (EMT) phenotype. In FOXG1-overexpressing cells, FOXG1 promotes the stabilization and nuclear accumulation of β-catenin by directly binding to β-catenin and it associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs) on Wnt responsive enhancers (WREs) in chromatin. Conclusions The results show that FOXG1 plays a key role in mediating cancer cell metastasis through the Wnt/β-catenin pathway in HCC cells and predicts HCC prognosis after surgery. Targeting FOXG1 may provide a new approach for therapeutic treatment in the future.

Funder

the Natural Science Foundation of China

Guangzhou Science and Technology Plan Projects

Natural Science Foundation of Guangdong Province

Sun Yat-sen University Clinical Research 5010 Program

National major science and technology project for the prevention and treatment of AIDS and viral hepatitis

Research project on degree and postgraduate education reform in Guangdong province

Young teacher training program of Sun Yat-sen university

Open project of Key Lab of Tropical Disease Control (Sun Yat-sen University), Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3