Author:
Deng Shenghe,Cheng Denglong,Wang Jun,Gu Junnan,Xue Yifan,Jiang Zhenxing,Qin Le,Mao Fuwei,Cao Yinghao,Cai Kailin
Abstract
Abstract
Background
The tumor microenvironment (TME) is an important factor that regulates the progression of colorectal cancer (CRC). Cancer-associated fibroblasts (CAFs) are the main mesenchymal cells in the TME and play a vital role in tumor progression; however, the specific underlying mechanisms require further study.
Methods
Multiple single-cell and transcriptome data were analyzed and validated. Primary CAFs isolation, CCK8 assay, co-culture assay, western blotting, multiple immunofluorescence, qRT-PCR, ELISA, immunoprecipitation, ChIP, double luciferase, and animal experiments were used to explore the potential mechanism of MYL9 regulation in CRC.
Results
Our findings revealed that MYL9 was predominantly localized and expressed in CAFs rather than in CRC cells, and bioinformatics analysis revealed that high MYL9 expression was strongly associated with poor overall and disease-free survival in various tumors. In addition, high MYL9 expression is closely associated with M2 macrophage infiltration, which can lead to an immunosuppressive microenvironment in CRC, making it insensitive to immunotherapy. Mechanically, MYL9 can regulate the secretion of CAFs on CCL2 and TGF-β1, thus affecting the immune microenvironment and progression of CRC. In addition, MYL9 bounded with IQGAP1 to regulate CCL2 and TGF-β1 secretion through the ERK 1/2 pathway, and CCL2 and TGF-β1 synergistically promoted CRC cells progression through the PI3K-AKT pathway. Furthermore, MYL9 promotes epithelial-mesenchymal transition (EMT) in CRC. During the upstream regulation of MYL9 in CAFs, we found that the EMT transcription factor ZEB1 could bind to the MYL9 promoter in CAFs, enhancing the activity and function of MYL9. Therefore, MYL9 is predominantly expressed in CAFs and can indirectly influence tumor biology and EMT by affecting CAFs protein expression in CRC.
Conclusions
MYL9 regulates the secretion of cytokines and chemokines in CAFs, which can affect the immune microenvironment of CRC and promote CRC progression. The relationship between MYL9 expression and CRC clinical staging and immunotherapy is closer in CAFs than in tumor cells; therefore, studies using CAFs as a model deserve more attention when exploring tumor molecular targets in clinical research.
Funder
Interdisciplinary program of Wuhan National High Magnetic Field Center
‘the Fundamental Research Funds for the Central Universities’, HUST
National Natural Science Foundation of China
2021 Clinical Research Foundation of Wuhan Union Hospital
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献