Viability and collagen secretion by fibroblasts on titanium surfaces with different acid-etching protocols

Author:

de Souza Vilton Zimmermann,Manfro Rafael,Joly Júlio César,Elias Carlos Nelson,Peruzzo Daiane Cristina,Napimoga Marcelo Henrique,Martinez Elizabeth FerreiraORCID

Abstract

Abstract Background From the consolidation of surface treatments of dental implants and knowledge on the cellular mechanisms of osseointegration, studies have highlighted the importance of a connective tissue seal against the implant to prevent contamination from the oral environment and consequent biofilm formation. Objective This in vitro study aimed to evaluate whether different titanium surface treatments using acid solutions promoted an increase in collagen secretion, proliferation, and viability of fibroblasts. Material and methods Commercially pure grade-4 titanium disks (6 × 2 mm) were treated with different acid solutions (hydrochloric, nitric, and sulfuric) for 20 and 60 min, respectively, obtaining mean surface roughness of 0.1 to 0.15 μm and 0.5 to 0.7 μm. Human fibroblasts were seeded onto different surfaces and assessed after 24 h, 48 h, and 72 h for cell proliferation and viability using Trypan blue staining and MTT, respectively, as well as the secretion of type I collagen on to such surfaces using ELISA. Machined titanium surfaces were used as controls. Data were statistically analyzed using one-way ANOVA and Fisher's LSD test for multiple comparisons, adopting a significance level of 5%. Results No significant difference was observed in cell proliferation for the different surfaces analyzed. Cell viability was significantly lower on the machined surface, after 48 h, when compared to the groups treated with acid for 20 or 60 min, which did not differ from each other. The expression of type I collagen was lowest on the acid-treated surfaces. Conclusion The results showed that the acid treatment proposed did not promote fibroblast proliferation and viability nor favor type I collagen synthesis.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3