Preliminary monosodium glutamate-induced changes in mammary gland receptors and gene expression, water channel, oxidative stress, and some lactogenic biomarkers in lactating rats

Author:

Emmanuel Nachamada SolomonORCID,Bako Ibrahim Gaya,Malgwi Ibrahim Samaila,Tanko Yusuf,Eze Ejike Daniel,Umar Hajara Ali,Aliyu Munira,Muhammad Abdulmalik,Mohammed Aliyu

Abstract

Abstract Background Changes induced by monosodium glutamate (MSG) can negatively impact milk production and secretion, among other adverse effects. This study aimed to investigate the effects of MSG consumption on receptor gene expression and quantification of hormones and receptors, as well as oxidative stress biomarkers and other lactogenic parameters in lactating animals. Twenty-four female Wistar rats, nine weeks of age, were randomly assigned to four groups, each containing six rats, at parturition. The rats in groups II, III, and IV were given varying doses of monosodium glutamate (MSG); while, group I was given distilled water and served as the control. The experimental period lasted two (2) weeks. Results The groups administered with MSG showed a significant decrease in mammary PRLR gene expression (p < 0.05), as well as a marked reduction (p < 0.05) in mammary PRLR, OXT receptor, AQP-3, brain antioxidant enzymes (SOD, GPx, and CAT), and pituitary SOD compared to the control group (p < 0.05). Furthermore, there was a significant increase (p < 0.05) in reactive oxygen species levels in the serum and mammary gland homogenates, erythrocyte osmotic fragility, and elevated (p < 0.05) brain and pituitary MDA levels in the MSG-administered groups compared to the control group. Daily milk yields were significantly decreased (p < 0.05) in the MSG-administered groups between days 10 and 14 of lactation. Conclusion The findings of this study suggest that prolonged consumption of MSG could interfere with lactation-associated functions via increased ROS production, reduced antioxidants, decreased AQP-3, mammary prolactin and oxytocin receptors, and prolactin receptor mRNA in lactating Wistar rats. Graphical Abstract

Funder

Tertiary Education Trust Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3