Abstract
Abstract
Background
The medicinal potential of plant extracts for the management of liver and kidney disorders in humans has been harnessed for the past several centuries. However, the abundant plant resources have not been fully investigated, thus this study was initiated to evaluate the influence of Cassia spectabilis leaves extract (CSE) on diclofenac-induced oxidative stress and hepatorenal damage in Wistar rats. The rats in the 1st group were injected with normal saline, and rats in the 2nd group were injected with diclofenac sodium (DF) by intramuscular route. Rats in the 3rd to 5th groups were treated with graded doses of CSE by oral gavages, and injected with DF. The serum markers of oxidative stress and hepatorenal damage in rats were estimated by biochemical assays. In addition, histological examinations of liver and kidney tissues were evaluated.
Results
There was significant (p < 0.05) increase in the levels of total bilirubin, ALT, AST, ALP, GGT, LDH, urea, creatinine, uric acid, potassium ions, and MDA of rats injected with DF when compared with normal control. The treatment of DF-injected rats with CSE significantly (p < 0.05) reduced the levels of these markers of hepatorenal damage in rats when compared with DF control. There was significant (p < 0.05) decrease in the levels of GSH, SOD, CAT, GPx, GST, sodium ions, proteins and G6Pase after injection of rats with DF when compared with normal control. However, treatment of DF-injected rats with CSE significantly (p < 0.05) increased the levels of these markers of antioxidant status and oxidative damage in hepatorenal tissues of rats when compared with DF control. The photomicrographs of hepatorenal tissues showed structural features which corroborated our biochemical findings in this study.
Conclusion
The findings of this study have shown that CSE may have protective effect against DF-induced oxidative stress and hepatorenal damage in Wistar rats. Thus, the medicinal potential of this plant leaves extract may be harnessed for the development of phytotherapeutic products.
Funder
Tertiary Education Trust Fund
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Abotsi, W. M. K., Woode, E., Ainooson, G. K., Amo-Barimah, A. K., & Boakye-Gyasi, E. (2010). Antiarthritic and antioxidant effects of the leaf extract of Ficus exasperate P. Beauv. (Moraceae). Pharmaceutical Research, 2(2), 89–97. PMCID: PMC3140113.
2. Adeyemi, W. J., & Olayaki, L. A. (2018). Diclofenac-induced hepatotoxicity: Low dose of omega-3 fatty acids have more protective effects. Toxicology Reports, 5, 90–95. https://doi.org/10.1016/j.toxrep.2017.12.002
3. Al-Asmari, A. K., Al-Said, M. S., Abbasmanthiri, R., Al-Buraidi, A., Ibrahim, K. E., & Rafatullah, S. (2020). Impact of date palm pollen (Phoenix dactylifera) treatment on paracetamol-induced hepatorenal toxicity in rats. Clinical Phytoscience, 6, 16. https://doi.org/10.1186/s40816-020-0151-x
4. Al-Attar, A. M., Alrobai, A. A., & Almalki, D. A. (2017). Protective effect of olive and juniper leaves extracts on nephrotoxicity induced by thioacetamide in male mice. Saudi Journal of Biological Sciences, 24, 15–22. https://doi.org/10.1016/j.sjbs.2015.08.013
5. Alegre, M., Ciudad, C. J., Fillat, C., & Guinovart, J. J. (1988). Determination of glucose 6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Analytical Biochemistry, 173(1), 185–189. https://doi.org/10.1016/0003-2697(88)90176-5