Testicular dysfunction induced by aluminum oxide nanoparticle administration in albino rats and the possible protective role of the pumpkin seed oil

Author:

Hamdi HamidaORCID

Abstract

Abstract Background Even though the widespread of nanoalumina and their benefits in all fields, its potential impacts on male reproductive system have limited information. Objective The present study was conducted to investigate the testicular dysfunction of nanoalumina and the protective role of pumpkin seed oil (PSO) against potential adverse impacts induced by alumina nanoparticles (Al2O3-NPs) in male rat. Methodology Al2O3-NPs were administered to the rat orally at a dose of 70 mg/kg body weight once a day for 28 successive days, while pumpkin seed oil was administered to the rat orally at 4 mL/kg b w before administration of Al2O3-NPs, once a day for 28 successive days. After the administration period, sperm concentration, motility, morphology, and DNA damage, as biomarkers of reproductive toxic effects, were evaluated using sperm analysis and comet assays, and histopathological examination of testis was performed. In addition, level of the serum testosterone hormones were estimated, and the levels of oxidative stress biomarkers that take part in the reproductive pathologies such as catalase, glutathione, and malondialdehyde were estimated. Results The present results revealed that Al2O3-NPs induced DNA damage in testicular cells, marked histopathological alterations, and caused a significant elevation in MDA in testicular tissue. There was a significant decline in GSH and CAT activities. Furthermore, there was a significant decline in serum testosterone level in the testicular tissue of Al2O3-NP-administered rats. In contrast, pumpkin seed oil co-administration alleviated DNA damage and improved the histopathological alterations in the testicular tissues. Moreover, pumpkin seed oil co-administration significantly reduced MDA and improved the antioxidant defenses in testicular tissue. Conclusion The current study concluded that Al2O3-NPs caused testicular dysfunction by generating oxidative injury. Otherwise, PSO co-administration successfully attenuated the adverse impacts of Al2O3-NPs via suppression of oxidative stress and apoptosis as well as enhancement of the antioxidant defense system.

Publisher

Springer Science and Business Media LLC

Reference81 articles.

1. Aebi, H. (1984). Catalase in vitro. Methods of Enzymology, 105, 121–126.

2. Agarwal, A., & Saleh, R. A. (2002). Role of oxidants in male infertility: rationale, significance, and treatment. The Urologic Clinics of North America, 29(4), 817–827.

3. Akang, E. N., Oremosu, A. A., Dosumu, O. O., Noronha, C. C., & Okanlawon, A. O. (2010). The effect of fluted pumpkin (Telferia occidentalis) seed oil (FPSO) on testis and semen parameters. Agriculture and Biology Journal of North America, 1(4), 697–703.

4. Akintayo, E. T. (1997). Chemical composition and physicochemical properties of fluted pumpkin (Telfairia occidentalis) seed and seed oils. Rivista Italiana Delle Sostanze Grasse, 74(1), 13–15.

5. Al-Zuhair, H., Abd el-Fattah, A. A., & Abd el Latif, H. A. (1997). Efficacy of simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacological Research, 35(5), 403–408.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3