TFPI2 suppresses breast cancer progression through inhibiting TWIST-integrin α5 pathway

Author:

Zhao Danyi,Qiao Jingjing,He Hongmei,Song Jincheng,Zhao Shanshan,Yu Jing

Abstract

Abstract Background Tissue factor pathway inhibitor 2 (TFPI2) participates in carcinogenesis of various tumors, and is associated with poor survival of breast cancer patients. However, the effect and underlying mechanism of TFPI2 on breast cancer progression remains to be investigated. Methods The expression level of TFPI2 in breast cancer tissues and cell lines was examined via qRT-PCR (quantitative real-time polymerase chain reaction) and immunohistochemistry. CCK8 (Cell Counting Kit-8), colony formation, wound healing or transwell assays were used to detect cell viability, proliferation, migration or invasion, respectively. In vivo subcutaneous xenotransplanted tumor model was established to detect tumorigenic function of TFPI2, and the underlying mechanism was evaluated by immunohistochemistry and western blot. Results TFPI2 was down-regulated in breast cancer tissues and cell lines, and was associated with poor prognosis of patients diagnosed with breast cancer. Over-expression of TFPI2 inhibited cell viability, proliferation, migration and invasion of breast cancer cells. Mechanistically, Twist-related protein 1 (TWIST1) was negatively associated with TFPI2 in breast cancer patients, whose expression was decreased by TFPI2 over-expression or increased by TFPI2 knockdown. Moreover, TWIST1 could up-regulate integrin α5 expression. Functional assays indicated that the inhibition abilities of TFPI2 over-expression on breast cancer progression were reversed by TWIST1 over-expression. In vivo subcutaneous xenotransplanted tumor model also revealed that over-expression of TFPI2 could suppress breast tumor growth via down-regulation of TWIST1-mediated integrin α5 expression. Conclusions TFPI2 suppressed breast cancer progression through inhibiting TWIST-integrin α5 pathway, providing a new potential therapeutic target for breast cancer treatment.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

Reference33 articles.

1. Albuquerque AP, Balmana M, Reis CA, Beltrão EI. Identification of appropriate housekeeping genes for quantitative RT-PCR analysis in MDA-MB-231 and NCI-H460 human cancer cell lines under hypoxia and serum deprivation. J Mol Clin Med. 2018;1:127–33.

2. Benson JR, Jatoi I, Keisch M, Esteva FJ, Makris A, Jordan VC. Early breast cancer. Lancet. 2009;373:1463–79.

3. Chand HS, Schmidt AE, Bajaj SP, Kisiel W. Structure-function analysis of the reactive site in the first Kunitz-type domain of human tissue factor pathway inhibitor-2. J Biol Chem. 2004;279:17500–7.

4. Feng Y, Wang Y, Zhao X, Mu Y, Lv S, Li Y. Correlation between the intrinsic subtype and diagnostic methods of axillary lymph node metastasis in primary breast cancer. Eur J Gynaecol Oncol. 2018;39:921–5.

5. Glackin CA. Targeting the Twist and Wnt signaling pathways in metastatic breast cancer. Maturitas. 2014;79:48–51.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3