Swimming exercise ameliorates insulin resistance and nonalcoholic fatty liver by negatively regulating PPARγ transcriptional network in mice fed high fat diet

Author:

Zhang Yong,Xu Jie,Zhou Di,Ye Tingting,Zhou Puqing,Liu Zuofeng,Liu Xinyuan,Wang Zinan,Hua Tianmiao,Zhang Zhenghao,Sun QingyanORCID

Abstract

Abstract Background Recent findings elucidated hepatic PPARγ functions as a steatogenic-inducer gene that activates de novo lipogenesis, and is involved in regulation of glucose homeostasis, lipid accumulation, and inflammation response. This study delved into a comprehensive analysis of how PPARγ signaling affects the exercise-induced improvement of insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD), along with its underlying mechanism. Methods Chronic and acute swimming exercise intervention were conducted in each group mice. IR status was assessed by GTT and ITT assays. Serum inflammatory cytokines were detected by Elisa assays. PPARγ and its target genes expression were detected by qPCR assay. Relative protein levels were quantified via Western blotting. ChIP-qPCR assays were used to detect the enrichment of PPARγ on its target genes promoter. Results Through an exploration of a high-fat diet (HFD)-induced IR and NAFLD model, both chronic and acute swimming exercise training led to significant reductions in body weight and visceral fat mass, as well as hepatic lipid accumulation. The exercise interventions also demonstrated a significant amelioration in IR and the inflammatory response. Meanwhile, swimming exercise significantly inhibited PPARγ and its target genes expression induced by HFD, containing CD36, SCD1 and PLIN2. Furthermore, swimming exercise presented significant modulation on regulatory factors of PPARγ expression and transcriptional activity. Conclusion The findings suggest that swimming exercise can improve lipid metabolism in IR and NAFLD, possibly through PPARγ signaling in the liver of mice.

Funder

National Natural Science Foundation of China

Provincial Project of Natural Science Research for Colleges and Universities of Anhui Province of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3