CIRP attenuates acute kidney injury after hypothermic cardiovascular surgery by inhibiting PHD3/HIF-1α-mediated ROS-TGF-β1/p38 MAPK activation and mitochondrial apoptotic pathways

Author:

Zhang Peiyao,Bai Liting,Tong Yuanyuan,Guo Shengwen,Lu Wenlong,Yuan Yue,Wang Wenting,Jin Yu,Gao Peng,Liu JinpingORCID

Abstract

Abstract Background The ischemia–reperfusion (IR) environment during deep hypothermic circulatory arrest (DHCA) cardiovascular surgery is a major cause of acute kidney injury (AKI), which lacks preventive measure and treatment. It was reported that cold inducible RNA-binding protein (CIRP) can be induced under hypoxic and hypothermic stress and may have a protective effect on multiple organs. The purpose of this study was to investigate whether CIRP could exert renoprotective effect during hypothermic IR and the potential mechanisms. Methods Utilizing RNA-sequencing, we compared the differences in gene expression between Cirp knockout rats and wild-type rats after DHCA and screened the possible mechanisms. Then, we established the hypothermic oxygen–glucose deprivation (OGD) model using HK-2 cells transfected with siRNA to verify the downstream pathways and explore potential pharmacological approach. The effects of CIRP and enarodustat (JTZ-951) on renal IR injury (IRI) were investigated in vivo and in vitro using multiple levels of pathological and molecular biological experiments. Results We discovered that Cirp knockout significantly upregulated rat Phd3 expression, which is the key regulator of HIF-1α, thereby inhibiting HIF-1α after DHCA. In addition, deletion of Cirp in rat model promoted apoptosis and aggravated renal injury by reactive oxygen species (ROS) accumulation and significant activation of the TGF-β1/p38 MAPK inflammatory pathway. Then, based on the HK-2 cell model of hypothermic OGD, we found that CIRP silencing significantly stimulated the expression of the TGF-β1/p38 MAPK inflammatory pathway by activating the PHD3/HIF-1α axis, and induced more severe apoptosis through the mitochondrial cytochrome c-Apaf-1-caspase 9 and FADD-caspase 8 death receptor pathways compared with untransfected cells. However, silencing PHD3 remarkably activated the expression of HIF-1α and alleviated the apoptosis of HK-2 cells in hypothermic OGD. On this basis, by pretreating HK-2 and rats with enarodustat, a novel HIF-1α stabilizer, we found that enarodustat significantly mitigated renal cellular apoptosis under hypothermic IR and reversed the aggravated IRI induced by CIRP defect, both in vitro and in vivo. Conclusion Our findings indicated that CIRP may confer renoprotection against hypothermic IRI by suppressing PHD3/HIF-1α-mediated apoptosis. PHD3 inhibitors and HIF-1α stabilizers may have clinical value in renal IRI.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3