Hypolipidemic effect of ethanol extract from Chimonanthus nitens Oliv. leaves in hyperlipidemia rats via activation of the leptin/JAK2/STAT3 pathway

Author:

Pan Jianping,Ouyang Xilin,Jin Qi,Wang Wei,Xie Jiali,Yu Baoming,Ling Zhijie,Wu Qizhen,Zheng BaopingORCID

Abstract

Abstract Background This study aims to explore the protective role of ethanol extract from Chimonanthus nitens Oliv. leaf (COE) in hyperlipidemia via the leptin/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Methods Male Sprague‒Dawley rats were randomly divided into 6 groups (n = 8): normal-fat diet (NMD), high-fat diet (HFD), HFD treated with simvastatin (SIM, 5 mg/kg/day), and HFD treated with COE (40, 80, 160 mg/kg/day). Lipid parameters, oxidative stress factors, serum leptin, body weight, hepatic wet weight and liver index were measured. Proteins in the leptin/JAK2/STAT3 pathway in liver tissues were determined using western blotting. Additionally, the expression levels of cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) were quantified using western blotting and quantitative real-time polymerase chain reaction (qPCR). Results COE decreased HFD-induced increases in body weight, hepatic wet weight and the liver index. HFD-induced hyperlipidemia and oxidative stress were observed in rat serum and livers. Additionally, COE repressed these two symptoms in rats fed a HFD. Moreover, COE caused CYP7A1 upregulation and HMGCR downregulation in HFD-fed rats. Mechanistically, COE induced the expression of leptin receptor (OB-Rb) and JAK2 and STAT3 phosphorylation in HFD-treated rats. Conclusion COE activates the leptin/JAK2/STAT3 pathway, leading to an improvement in liver function and lipid metabolism and ultimately alleviating hyperlipidemia in rats. Therefore, COE may be a potential hypolipidemic drug for the treatment of hyperlipidemia.

Funder

a project fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3