Rad1 attenuates DNA double-strand breaks and cell cycle arrest in type II alveolar epithelial cells of rats with bronchopulmonary dysplasia

Author:

Tong Xin,Li Danni,Liu Na,Huang Wanjie,Zhao Xinyi,Zhang Dan,Xue Xindong,Fu JianhuaORCID

Abstract

Abstract Background Bronchopulmonary dysplasia (BPD) is the most common and serious chronic lung disease in preterm infants with pathological characteristics of arrested lung development. DNA double-strand breaks (DSBs) are a serious manifestation of oxidative stress damage, but little is known about the role of DSBs in BPD. The current study set out to detect DSB accumulation and cell cycle arrest in BPD and study the expression of genes related to DNA damage and repair in BPD through DNA damage signaling pathway-based PCR array to determine a suitable target to improve arrested lung development associated with BPD. Methods DSB accumulation and cell cycle arrest were detected in a BPD animal model and primary cells, then a DNA damage signaling pathway-based PCR array was used to identify the target of DSB repair in BPD. Results DSB accumulation and cell cycle arrest were shown in BPD animal model, primary type II alveolar epithelial cells (AECII) and cultured cells after exposure to hyperoxia. Of the 84 genes in the DNA damage-signaling pathway PCR array, eight genes were overexpressed and 11 genes were repressed. Rad1, an important protein for DSB repair, was repressed in the model group. Real-time PCR and western blots were used to verify the microarray results. Next, we confirmed that silencing Rad1 expression aggravated the accumulation of DSBs and cell cycle arrest in AECII cells, whereas its overexpression alleviated DSB accumulation and cell cycle arrest. Conclusions The accumulation of DSBs in AECII might be an important cause of alveolar growth arrest associated with BPD. Rad1 could be an effective target for intervention to improve this arrest in lung development associated with BPD.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of Commercially Available Human Primary Alveolar Epithelial Cells;American Journal of Respiratory Cell and Molecular Biology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3