ERRα protects against sepsis-induced acute lung injury in rats

Author:

Xia Wenfang,Pan Zhou,Zhang Huanming,Zhou Qingshan,Liu YuORCID

Abstract

Abstract Background Sepsis-induced acute lung injury (ALI) is associated with poor survival rates. The identification of potential therapeutic targets for preventing sepsis-induced ALI has clinical importance. This study aims to investigate the role of estrogen-related receptor alpha (ERRα) in sepsis-induced ALI. Methods Lipopolysaccharide (LPS) was used to simulate sepsis-induced ALI model in rat pulmonary microvascular endothelial cells (PMVECs). The effects of ERRα overexpression and knockdown on LPS-induced endothelial permeability, apoptosis and autophagy were determined by horseradish peroxidase permeability assay, TdT-mediated dUTP Nick End Labeling (TUNEL) assay, flow cytometry, immunofluorescence staining, RT-PCR and Western Blotting. The rat model with sepsis-induced ALI was established by cecal ligation and puncture in anesthetized rats to verify the results of in vitro experiments. Animals were randomly assigned to receive intraperitoneal injection of vehicle or ERRα agonist. Lung vascular permeability, pathological injury, apoptosis and autophagy were examined. Results Overexpression of ERRα ameliorated LPS-induced endothelial hyperpermeability, degradation of adherens junctional molecules, upregulation of bax, cleaved caspase 3 and cleaved caspase 9 levels, downregulation of anti-apoptotic protein Bcl-2 level, and promoted the formation of autophagic flux, while the knockdown of ERRα exacerbated LPS-induced apoptosis and inhibited the activation of autophagy. Administration of ERRα agonist alleviated the pathological damage of lung tissue, increased the levels of tight junction proteins and adherens junction proteins, and decreased the expression of apoptosis-related proteins. Promoting the expression of ERRα significantly enhanced the process of autophagy and reduced CLP-induced ALI. Mechanistically, ERRα is essential to regulate the balance between autophagy and apoptosis to maintain the adherens junctional integrity. Conclusion ERRα protects against sepsis-induced ALI through ERRα-mediated apoptosis and autophagy. Activation of ERRα provides a new therapeutic opportunity to prevent sepsis-induced ALI.

Funder

National Nature Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3