Stellate cells are in utero markers of pancreatic disease in cystic fibrosis

Author:

Leir Shih-HsingORCID,Tkachenko Svyatoslav,Paranjapye Alekh,Meckler Frederick,Van Wettere Arnaud J.,Kerschner Jenny L.,Kuznetsov Elizabeth,Schacht Makayla,Gillurkar Pulak,Regouski Misha,Viotti Perisse Iuri,Marriott Cheyenne M.,Liu Ying,Bunderson Ian,White Kenneth L.,Polejaeva Irina A.ORCID,Harris AnnORCID

Abstract

Abstract Background Pancreatic fibrosis is an early diagnostic feature of the common inherited disorder cystic fibrosis (CF). Many people with CF (pwCF) are pancreatic insufficient from birth and the replacement of acinar tissue with cystic lesions and fibrosis is a progressive phenotype that may later lead to diabetes. Little is known about the initiating events in the fibrotic process though it may be a sequela of inflammation in the pancreatic ducts resulting from loss of CFTR impairing normal fluid secretion. Here we use a sheep model of CF (CFTR−/−) to examine the evolution of pancreatic disease through gestation. Methods Fetal pancreas was collected at six time points from 50-days of gestation through to term, which is equivalent to ~ 13 weeks to term in human. RNA was extracted from tissue for bulk RNA-seq and single cells were prepared from 80-day, 120-day and term samples for scRNA-seq. Data were validated by immunochemistry. Results Transcriptomic evidence from bulk RNA-seq showed alterations in the CFTR−/− pancreas by 65-days of gestation, which are accompanied by marked pathological changes by 80-days of gestation. These include a fibrotic response, confirmed by immunostaining for COL1A1, αSMA and SPARC, together with acinar loss. Moreover, using scRNA-seq we identify a unique cell population that is significantly overrepresented in the CFTR−/− animals at 80- and 120-days gestation, as are stellate cells at term. Conclusion The transcriptomic changes and cellular imbalance that we observe likely have pivotal roles in the evolution of CF pancreatic disease and may provide therapeutic opportunities to delay or prevent pancreatic destruction in CF.

Funder

Cystic Fibrosis Foundation

National Cancer Institute

US Department of Agriculture

Utah Agricultural Experiment Station

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3