Author:
Hong Shukun,Jian Chao,Wang Hongye,Wang Xincheng,Xing Luchuan,Qiao Lujun
Abstract
Abstract
Background
The optimal dose of glucocorticoids for acute respiratory distress syndrome (ARDS) is uncertain. This study aimed to evaluate the effects of different doses of methylprednisolone on sepsis-induced acute lung injury (ALI) rats and a cohort of moderate and severe ARDS patients.
Methods
ALI rats, challenged with lipopolysaccharide, were randomly received intraperitoneal injection of normal saline (model group) and different doses of methylprednisolone (0.5, 2, 8 mg/kg, named as low-, moderate- and high-dose group, respectively) for 5 days. The body weight changes of rats, inflammatory factors in bronchoalveolar lavage fluid (BALF), lung wet/dry ratio, histopathological score, and the mRNA expressions of glucocorticoid receptor α (GRα), GRβ and nuclear factor-κB (NF-κB) were measured. Forty moderate and severe ARDS patients were treated with standard of care or plus different doses of methylprednisolone (40, 80, 120 mg/day, named as low-, moderate- and high-dose group, respectively) for 5 days. Clinical outcomes were PaO2/FiO2 ratio and C-reactive protein (CRP) level at day 5, intubation rate, hospital stay, 28-day mortality, and adverse events rate.
Results
In animal experiment, different doses of methylprednisolone could increase the body weight of rats, and reduce inflammatory factors in BALF and the degree of lung injury compared with model group. The efficacy of methylprednisolone at moderate-dose was better than that at low-dose, but was equivalent to that at high-dose, which was consistent with the differential changes in the mRNA expression of GRα, GRβ and NF-κB. In clinical study, the moderate-dose group was associated with higher PaO2/FiO2 ratio and lower CRP level. No significant difference in other clinical outcomes among groups was detected.
Conclusions
This study showed that the efficacy of methylprednisolone in ARDS treatment was not always dose-dependent due to the differential regulation of related receptors. The moderate-dose of methylprednisolone may be the potential optimal dose for ARDS treatment, which needs to be further verified by larger clinical trials.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Reference41 articles.
1. Saguil A, Fargo MV. Acute respiratory distress syndrome: diagnosis and management. Am Fam Physician. 2020;101(12):730–8.
2. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.
3. Williams GW, Berg NK, Reskallah A, Yuan X, Eltzschig HK. Acute respiratory distress syndrome. Anesthesiology. 2021;134(2):270–82.
4. Huijsmans RL, Killien EY, Leenen LP, Van Gestel JP. Epidemiology and outcomes of ARDS after pediatric trauma. Respir Care. 2021;66(11):1758–67.
5. Critical Care Branch of Chinese Medical Association. Guidelines for diagnosis and treatment of acute lung injury/acute respiratory distress syndrome (2006). Chin J Emerg Med. 2007;16(4):343–9.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献