Author:
Li Hongwen,Lin Jiangtao,Zhang Qing,Wang Jingru,Li Chunxiao
Abstract
Abstract
Background
Whether asthma patients could benefit from home monitoring for fractional exhaled nitric oxide (flow of 50 mL/s, FeNO50) is unknown. We explore the application value of home monitoring FeNO50 in daily asthma management.
Methods
Twenty-two untreated, uncontrolled asthma patients were selected. Medical history, blood and sputum samples, pulmonary function, Asthma Control Test (ACT), and other clinical data of the subjects were collected. All subjects underwent daily monitoring for four weeks using a FeNO50 monitor and mobile spirometry (mSpirometry). The diurnal differences and dynamic changes were described. Compare the effect-acting time and the relative plateau of treatment between FeNO50 and mSpirometry monitoring.
Results
In the first two weeks, the morning median (IQR) level of FeNO50 was 44 (35, 56) ppb, which was significantly higher than the evening median level [41 (32, 53) ppb, P = 0.028]. The median (IQR) effect-acting time assessed by FeNO50 was 4 (3, 5) days, which was significantly earlier than each measure of mSpirometry (P < 0.05). FeNO50 reached the relative plateau significantly earlier than FEV1 (15 ± 2 days vs. 21 ± 3 days, P < 0.001). After treatment, the daily and weekly variation rates of FeNO50 showed a gradually decreasing trend (P < 0.05). The ACT score, sputum eosinophils, and blood eosinophils also significantly improved (P ≤ 0.01).
Conclusions
The daily home monitoring of FeNO50 in asthmatic patients showed significant circadian rhythm, and the sensitivity of FeNO50 in evaluating the response to treatment was higher than mSpirometry. The daily and weekly variation rates of FeNO50 change dynamically with time, which may be used to assess the condition of asthma.
Funder
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC