Abstract
Abstract
Background
Globally, tuberculosis (TB) lasts a major public health concern. Using feasible strategies to estimate TB infectious periods is crucial. The aim of this study was to determine the magnitude of TB infectious period and associated factors in East Gojjam zone.
Methods
An institution-based prospective study was conducted among 348 pulmonary TB (PTB) cases between December 2017 and December 2018. TB cases were recruited from all health facilities located in Hulet Eju Enesie, Enebse Sarmider, Debay Tilatgen, Dejen, Debre-Markos town administration, and Machakel districts. Data were collected through an exit interview using a structured questionnaire and analyzed by IBM SPSS version25. The TB infectious period of each patient category was determined using the TB management time and sputum smear conversion time. The sum of the infectious period of each patient category gave the infectious pool of the study area. A multivariable logistic regression analysis was used to identify factors associated with the magnitude of TB infectious period.
Results
Of the total participated PTB cases, 209(60%) were male, 226(65%) aged < 30 years, 205(59%) were from the rural settings, and 77 (22%) had comorbidities. The magnitude of the TB infectious pool in the study area was 78,031 infectious person-days. The undiagnosed TB cases (44,895 days), smear-positive (14,625 days) and smear-negative (12,995 days) were major contributors to the infectious pool. The overall average median TB management time was 142.4 days (IQR, 98–238 days). Similarly, the average sputum smear conversion time of PTB cases (new and repeat) was 46 days. Residence, knowledge, form of TB, smoking, alcohol history, distance from the facility, comorbidity history and stigma were statistically significant factors TB infectious period (p-value< 0.05).
Conclusions
The magnitude of the TB infectious pool is high even if it is lower than the findings of previous studies. This might be an indicator of poor access to TB services, service delays, low community awareness, impaired facility readiness, and poor transportation. Improving personal awareness and behavior, timely management of commodities, and using the TB management time in TB control are crucial to improving TB control activities.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Reference49 articles.
1. Rieder HL, Chen-Yuan C, Gie RP, Enarson DA. Crofton's clinical tuberculosis. 3rd ed. Oxford: Macmillan; 2009.
2. World Health Organization. Global tuberculosis report 2018. Geneva; 2018. Licence: CC BY-NC-SA 3.0 IGO.
3. Karki B, Kittel G, Bolokon I Jr, Duke T. Active community-based case finding for tuberculosis with limited resources: estimating prevalence in a remote area of Papua New Guinea. Asia Pacific Journal of Public Health. 2017;29(1):17–27.
4. Kazemnejad A, Jang SA, Amani F, Omidi A. Global epidemic trend of tuberculosis during 1990-2010: using segmented regression model. Model J Res Health Sci. 2014;14(2):115–21.
5. Alene KA, Viney K, McBryde ES, Clements ACA. Spatial patterns of multidrug-resistant tuberculosis and relationships to socioeconomic, demographics and household factors in northwest Ethiopia. PLoS ONE. 2017;12(2):e0171800.