Improving the diagnosis of active tuberculosis: a novel approach using magnetic particle-based chemiluminescence LAM assay

Author:

Li Yan,Ru Zhiwei,Wei Hongxia,Wu Ming,Xie Guihua,Lou Jianrong,Yang Xiang,Zhang Xilin

Abstract

Abstract Objectives Tuberculosis (TB) is a significant global health concern, given its high rates of morbidity and mortality. The diagnosis using urine lipoarabinomannan (LAM) primarily benefits HIV co-infected TB patients with low CD4 counts. The focus of this study was to develop an ultra-sensitive LAM assay intended for diagnosing tuberculosis across a wider spectrum of TB patients. Design & Methods To heighten the sensitivity of the LAM assay, we employed high-affinity rabbit monoclonal antibodies and selected a highly sensitive chemiluminescence LAM assay (CLIA-LAM) for development. The clinical diagnostic criteria for active TB (ATB) were used as a control. A two-step sample collection process was implemented, with the cutoff determined initially through a ROC curve. Subsequently, additional clinical samples were utilized for the validation of the assay. Results In the assay validation phase, a total of 87 confirmed active TB patients, 19 latent TB infection (LTBI) patients, and 104 healthy control samples were included. Applying a cutoff of 1.043 (pg/mL), the CLIA-LAM assay demonstrated a sensitivity of 55.2% [95%CI (44.13%~65.85%)], and a specificity of 100% [95%CI (96.52%~100.00%)], validated against clinical diagnostic results using the Mann-Whitney U test. Among 11 hematogenous disseminated TB patients, the positive rate was 81.8%. Importantly, the CLIA-LAM assay consistently yielded negative results in the 19 LTBI patients. Conclusion Overall, the combination of high-affinity antibodies and the CLIA method significantly improved the sensitivity and specificity of the LAM assay. It can be used for the diagnosis of active TB, particularly hematogenous disseminated TB.

Funder

the Leading Talents of Guangdong Province program

Leading Talents in Entrepreneurship and Innovation of Guangzhou Development Zone

Yangcheng Innovation and Entrepreneurship Talent Support Program

Publisher

Springer Science and Business Media LLC

Reference28 articles.

1. Chakaya J, et al. Global tuberculosis report 2020 - reflections on the global TB burden, treatment and prevention efforts. Int J Infect Dis. 2021;113(Suppl 1):S7–S12.

2. Correia-Neves M et al. Biomarkers for tuberculosis: the case for lipoarabinomannan. ERJ Open Res, 2019. 5(1).

3. Tuberculosis. Mycobacterial Cell Envelope. 2019.

4. Bjerrum S, et al. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in people living with HIV. Cochrane Database Syst Rev. 2019;10:CD011420.

5. Organization W. The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV: policy guidance. 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3