What evidence exists on the impact of anthropogenic radiofrequency electromagnetic fields on animals and plants in the environment: a systematic map

Author:

Karipidis KenORCID,Brzozek Chris,Mate Rohan,Bhatt Chhavi Raj,Loughran Sarah,Wood Andrew W

Abstract

Abstract Background Exposure to radiofrequency (RF) electromagnetic fields (EMF), particularly from telecommunications sources, is one of the most common and fastest growing anthropogenic factors on the environment. In many countries, humans are protected from harmful RF EMF exposure by safety standards that are based on guidelines by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The ICNIRP guidelines are based on knowledge of how RF EMF affects the human body, however, there are currently no recognised international guidelines to specifically protect animals and plants. Whether the ICNIRP guidelines for humans are adequate to provide protection to the environment is a subject of active debate. There is some public concern that new telecommunications technologies, like the 5G mobile phone network may affect the natural environment. This systematic map presents a searchable database of all the available evidence on whether anthropogenic RF EMF has an effect on plants and animals in the environment. The map also identifies gaps in knowledge, recommends future research and informs environmental and radiation protection authorities. Methods The method used was published in an a priori protocol. Searches included peer-reviewed and grey literature published in English with no time and geographic restrictions. The EMF-Portal, PubMed and Web of Science databases were searched, and the resulting articles were screened in three stages: title, abstract and full text. Studies were included with a subject population of all animals and plants, with exposures to anthropogenic RF EMF (frequency range 100 kHz–300 GHz) compared to no or lower-level exposure, and for any outcomes related to the studied populations. For each included study, metadata were extracted on key variables of interest that were used to represent the distribution of available evidence. Review findings The initial search, search update and supplementary searches produced 24,432 articles and of those 334 articles (237 on fauna and 97 on flora) that were relevant were included in the systematic map. The vast majority of studies were experiments conducted in a laboratory rather than observational studies of animals and plants in the natural environment. The majority of the studies investigated exposures with frequencies between 300 and 3000 MHz, and although the exposure level varied, it was mainly low and below the ICNIRP limits. Most of the animal studies investigated insects and birds, whereas grains and legumes were the most investigated plants. Reproduction, development and behaviour were the most investigated effects for animals, and germination and growth for plants. The vast majority of the studies employed poor quality methods. Conclusion There are distinct evidence clusters: for fauna, on insect and bird reproduction, development and behaviour; and for flora, grain and legume germination and growth that would benefit from specific systematic reviews. The systematic map also highlights the clear need for investigating the effects of RF EMF on more species and more types of effects, and for an improvement in the quality of all studies.

Funder

Australian Government’s Electromagnetic Energy Program

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Ecology

Reference46 articles.

1. Verbeek J, Oftedal G, Feychting M, van Rongen E, Rosaria Scarfì M, Mann S, et al. Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: a survey among experts. Environ Int. 2021;146:106300.

2. Australian Radiation Protection and Nuclear Safety Agency. Radiofrequency radiation 2021. Available from: https://www.arpansa.gov.au/understanding-radiation/what-is-radiation/non-ionising-radiation/radiofrequency-radiation. Accessed 6 July 2021.

3. Brodie G, Jacob MV, Farrell P. Microwave and radio-frequency technologies in agriculture: an introduction for agriculturalists and engineers: Walter de Gruyter GmbH & Co KG; 2016.

4. Advisory Group on Non-ionising Radiation. Health effects from radiofrequency electromagnetic fields. In: Health Protection Agency, editor. 2012. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/333080/RCE-20_Health_Effects_RF_Electromagnetic_fields.pdf. Accessed 3 June 2021.

5. Australian Radiation Protection and Nuclear Safety Agency. 5G: the new generation of the mobile phone network and health 2021. Available from: https://www.arpansa.gov.au/news/5g-new-generation-mobile-phone-network-and-health. Accessed 11 November 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3