Evidence on the effectiveness of small unmanned aircraft systems (sUAS) as a survey tool for North American terrestrial, vertebrate animals: a systematic map protocol

Author:

Elmore Jared A.ORCID,Curran Michael F.,Evans Kristine O.,Samiappan Sathishkumar,Zhou Meilun,Pfeiffer Morgan B.,Blackwell Bradley F.,Iglay Raymond B.

Abstract

Abstract Background Small unmanned aircraft systems (sUAS) are replacing or supplementing manned aircraft and ground-based surveys in many animal monitoring situations due to better coverage at finer spatial and temporal resolutions, access, cost, bias, impacts, safety, efficiency, and logistical benefits. Various sUAS models and sensors are available with varying features and usefulness depending on survey goals. However, justification for selection of sUAS and sensors are not typically offered in published literature and existing reviews do not adequately cover past and current sUAS applications for animal monitoring nor their associated sUAS model and sensor technologies, taxonomic and geographic scope, flight conditions and considerations, spatial distributions of sUAS applications, and reported technical difficulties. We outline a systematic map protocol to collect and consolidate evidence pertaining to sUAS monitoring of animals. Our systematic map will provide a useful synthesis of current applications of sUAS-animal related studies and identify major knowledge clusters (well-represented subtopics that are amenable to full synthesis by a systematic review) and gaps (unreported or underrepresented topics that warrant additional primary research) that may influence future research directions and sUAS applications. Methods Our systematic map will investigate the current state of knowledge using an accurate, comprehensive, and repeatable search. We will find relevant peer-reviewed and grey literature as well as dissertations and theses using online publication databases, Google Scholar, and by request through a professional network of collaborators and publicly available websites. We will use a tiered approach to article exclusion with eligible studies being those that monitor (i.e., identify, count, estimate, etc.) terrestrial vertebrate animals. Extracted data concerning sUAS, sensors, animals, methodology, and results will be recorded in Microsoft Access. We will query and catalogue evidence in the final database to produce tables, figures, and geographic maps to accompany a full narrative review that answers our primary and secondary questions.

Funder

Animal and Plant Health Inspection Service

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3