Author:
Ceuppens Siele,Uyttendaele Mieke,Hamelink Stefanie,Boon Nico,Van de Wiele Tom
Abstract
Abstract
Background
The foodborne pathogen Bacillus cereus can cause diarrhoeal food poisoning by production of enterotoxins in the small intestine. The prerequisite for diarrhoeal disease is thus survival during gastrointestinal passage.
Methods
Vegetative cells of 3 different B. cereus strains were cultivated in a real composite food matrix, lasagne verde, and their survival during subsequent simulation of gastrointestinal passage was assessed using in vitro experiments simulating transit through the human upper gastrointestinal tract (from mouth to small intestine).
Results
No survival of vegetative cells was observed, despite the high inoculum levels of 7.0 to 8.0 log CFU/g and the presence of various potentially protective food components. Significant fractions (approx. 10% of the consumed inoculum) of B. cereus vegetative cells survived gastric passage, but they were subsequently inactivated by bile exposure in weakly acidic intestinal medium (pH 5.0). In contrast, the low numbers of spores present (up to 4.0 log spores/g) showed excellent survival and remained viable spores throughout the gastrointestinal passage simulation.
Conclusion
Vegetative cells are inactivated by gastric acid and bile during gastrointestinal passage, while spores are resistant and survive. Therefore, the physiological form (vegetative cells or spores) of the B. cereus consumed determines the subsequent gastrointestinal survival and thus the infective dose, which is expected to be much lower for spores than vegetative cells. No significant differences in gastrointestinal survival ability was found among the different strains. However, considerable strain variability was observed in sporulation tendency during growth in laboratory medium and food, which has important implications for the gastrointestinal survival potential of the different B. cereus strains.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology
Reference34 articles.
1. Ceuppens S, Rajkovic A, Heyndrickx M, Tsilia V, Van de Wiele T, Boon N, Uyttendaele M: Regulation of toxin production by Bacillus cereus and its food safety implications. Crit Rev Microbiol 2011, 37: 188-213. 10.3109/1040841X.2011.558832.
2. Ceuppens S, Rajkovic A, Hamelink S, Van de Wiele T, Boon N, Uyttendaele M: Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits. Foodborne Pathog Dis 2012, in press.
3. Ceuppens S, Uyttendaele M, Drieskens K, Rajkovic A, Boon N, Van de Wiele T: Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. J Food Prot 2012, 75: 690-694. 10.4315/0362-028X.JFP-11-481.
4. Hay DW, Carey MC: Chemical species of lipids in bile. Hepatology 1990, 12: S6-S12.
5. Ellis E, Goodwin B, Abrahamsson A, Liddle C, Mode A, Rudling M, Bjorkhem I, Einarsson C: Bile acid synthesis in primary cultures of rat and human hepatocytes. Hepatology 1998, 27: 615-620. 10.1002/hep.510270241.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献