B-CAT: a model for detecting botnet attacks using deep attack behavior analysis on network traffic flows

Author:

Putra Muhammad Aidiel Rachman,Ahmad Tohari,Hostiadi Dandy Pramana

Abstract

AbstractThreats on computer networks have been increasing rapidly, and irresponsible parties are always trying to exploit vulnerabilities in the network to do various dangerous things. One way to exploit vulnerabilities in a computer network is by employing malware. Botnets are a type of malware that infects and attacks targets in groups. Botnets develop quickly; the characteristics of initially sporadic attacks have grown into periodic and simultaneous. This rapid development has proved that the botnet is advanced and requires more attention and proper handling. Many studies have introduced detection models for botnet attack activity on computer networks. Apart from detecting the presence of botnet attacks, those studies have attempted to explore the characteristics of botnets, such as attack intensity, relationships between activities, and time segment analysis. However, there has been no research that explicitly detects those characteristics. On the other hand, each botnet characteristic requires different handling, while recognizing the characteristics of the botnet can help network administrators make appropriate decisions. Based on these reasons, this research builds a detection model that can recognize botnet characteristics using sequential traffic mining and similarity analysis. The proposed method consists of two main processes. The first is training to build a knowledge base, and the second is testing to detect botnet activity and attack characteristics. It involves dynamic thresholds to improve the model sensitivity in recognizing attack characteristics through similarity analysis. The novelty includes developing and combining analytical techniques of sequential traffic mining, similarity analysis, and dynamic threshold to detect and recognize the characteristics of botnet attacks explicitly on actual behavior in network traffic. Extensive experiments have been conducted for the evaluation using three different datasets whose results show better performance than others.

Funder

Ministry of Education, Culture, Research and Technology, The Republic of Indonesia

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3