Multi-density crime predictor: an approach to forecast criminal activities in multi-density crime hotspots

Author:

Cesario Eugenio,Lindia Paolo,Vinci Andrea

Abstract

AbstractThe increasing pervasiveness of ICT technologies and sensor infrastructures is enabling police departments to gather and store increasing volumes of spatio-temporal crime data. This offers the opportunity to apply data analytics methodologies to extract useful crime predictive models, which can effectively detect spatial and temporal patterns of crime events, and can support police departments in implementing more effective strategies for crime prevention. The detection of crime hotspots from geo-referenced data is a crucial aspect of discovering effective predictive models and implementing efficient crime prevention decisions. In particular, since metropolitan cities are heavily characterized by variable spatial densities of crime events, multi-density clustering seems to be more effective than classic techniques for discovering crime hotspots. This paper presents the design and implementation of MD-CrimePredictor (Multi- Density Crime Predictor), an approach based on multi-density crime hotspots and regressive models to automatically detect high-risk crime areas in urban environments, and to reliably forecast crime trends in each area. The algorithm result is a spatio-temporal crime forecasting model, composed of a set of multi-density crime hotspots, their densities and a set of associated crime predictors, each one representing a predictive model to forecast the number of crimes that are estimated to happen in its specific hotspot. The experimental evaluation of the proposed approach has been performed by analyzing a large area of Chicago, involving more than two million crime events (over a period of 19 years). This evaluation shows that the proposed approach, based on multi-density clustering and regressive models, achieves good accuracy in spatial and temporal crime forecasting over rolling prediction horizons. It also presents a comparative analysis between SARIMA and LSTM models, showing higher accuracy of the first method with respect to the second one.

Funder

Ministero dell’Universitá e della Ricerca

ICSC National Centre for HPC, Big Data and Quantum Computing

SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3