Evaluation of the trends in jobs and skill-sets using data analytics: a case study

Author:

Alibasic ArminORCID,Upadhyay Himanshu,Simsekler Mecit Can Emre,Kurfess Thomas,Woon Wei Lee,Omar Mohammed Atif

Abstract

Abstract Introduction Fast-emerging technologies are making the job market dynamic, causing desirable skills to evolve continuously. It is therefore important to understand the transitions in the job market to proactively identify skill sets required. Case description A novel data-driven approach is developed to identify trending jobs through a case study in the oil and gas industry. The proposed approach leverages a range of data analytics tools, including Latent Semantic Indexing (LSI), Latent Dirichlet Allocation (LDA), Factor Analysis and Non-Negative Matrix Factorization (NMF), to study changes in the market. Further, our approach is capable of identifying disparities between skills that are covered by the educational system, and the skills that are required in the job market. Discussion and evaluation The results of the case study show that, while the jobs most likely to be replaced are generally low-skilled, some high-skilled jobs may also be at risk. In addition, mismatches are identified between skills that are imparted by the education system and the skills required in the job market. Conclusions This study presents how job market and skills required evolved over time, which can help decision-makers to prepare the workforce for highly demanding jobs and skills. Our findings are in line with the concerns that automation is decreasing the demand for certain skills. On the other hand, we also identify the new skills that are required to strengthen the need for collaboration between minds and machines.

Funder

Khalifa University of Science, Technology and Research

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference46 articles.

1. Rossetti MD, Felder RA, Kumar A. Simulation of robotic courier deliveries in hospital distribution services. Health Care Manag Sci. 2000;3(3):201–13.

2. Halal W, Kolber J, Davies O, Global T. Forecasts of AI and future jobs in 2030: muddling through likely, with two alternative scenarios. J Future Stud. 2017;21(2):83–96.

3. Moravec H. Mind children: the future of robot and human intelligence. Cambridge: Harvard University Press; 1988.

4. Brynjolfsson E, McAfee A. Race against the machine: how the digital revolution is accelerating innovation, driving productivity, and irreversibly transforming employment and the economy. Brynjolfsson and McAfee; 2012.

5. Brynjolfsson E, McAfee A. The second machine age: work, progress, and prosperity in a time of brilliant technologies. New York: WW Norton & Company; 2014.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3