Cyberbullying detection: advanced preprocessing techniques & deep learning architecture for Roman Urdu data

Author:

Dewani AmiritaORCID,Memon Mohsin AliORCID,Bhatti SaniaORCID

Abstract

AbstractSocial media have become a very viable medium for communication, collaboration, exchange of information, knowledge, and ideas. However, due to anonymity preservation, the incidents of hate speech and cyberbullying have been diversified across the globe. This intimidating problem has recently sought the attention of researchers and scholars worldwide and studies have been undertaken to formulate solution strategies for automatic detection of cyberaggression and hate speech, varying from machine learning models with vast features to more complex deep neural network models and different SN platforms. However, the existing research is directed towards mature languages and highlights a huge gap in newly embraced resource poor languages. One such language that has been recently adopted worldwide and more specifically by south Asian countries for communication on social media is Roman Urdu i-e Urdu language written using Roman scripting. To address this research gap, we have performed extensive preprocessing on Roman Urdu microtext. This typically involves formation of Roman Urdu slang- phrase dictionary and mapping slangs after tokenization. We have also eliminated cyberbullying domain specific stop words for dimensionality reduction of corpus. The unstructured data were further processed to handle encoded text formats and metadata/non-linguistic features. Furthermore, we performed extensive experiments by implementing RNN-LSTM, RNN-BiLSTM and CNN models varying epochs executions, model layers and tuning hyperparameters to analyze and uncover cyberbullying textual patterns in Roman Urdu. The efficiency and performance of models were evaluated using different metrics to present the comparative analysis. Results highlight that RNN-LSTM and RNN-BiLSTM performed best and achieved validation accuracy of 85.5 and 85% whereas F1 score was 0.7 and 0.67 respectively over aggression class.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference40 articles.

1. Hellfeldt K, López-Romero L, Andershed H. Cyberbullying and psychological well-being in young adolescence: the potential protective mediation effects of social support from family, friends, and teachers. Int J Environ Res Public Health. 2020;17(1):45.

2. Dadvar M. Experts and machines united against cyberbullying [PhD thesis]. University of Twente. 2014.

3. Magsi H, Agha N, Magsi I. Understanding cyber bullying in Pakistani context: causes and effects on young female university students in Sindh province. New Horiz. 2017;11(1):103.

4. Qureshi SF, Abbasi M, Shahzad M. Cyber harassment and women of Pakistan: analysis of female victimization. J Bus Soc Rev Emerg Econ. 2020;6(2):503–10.

5. S. Irfan Ahmed, Cyber bullying doubles during pandemic. https://www.thenews.com.pk/tns/detail/671918-cyber-bullying-doubles-during-pandemic. Accessed 24 Aug 2020.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Cyberbullying Detection and Classification Techniques: A Machine Learning Approach;Engineering, Technology & Applied Science Research;2024-08-02

2. Detecting E-Bullying in Social Media Platform with Stacked BiLSTM Approach;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

3. Leveraging Domain-Specific Word Embedding and Hate Concepts in Hate Speech Detection;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Decoding Cyberbullying on Social Media: A Machine Learning Exploration;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

5. Detecting Cyberbullying through social media: A Deep Learning Approach;2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE);2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3