Improving the accuracy of text classification using stemming method, a case of non-formal Indonesian conversation

Author:

Rianto ORCID,Mutiara Achmad Benny,Wibowo Eri Prasetyo,Santosa Paulus Insap

Abstract

Abstract Background Stemming has long been used in data pre-processing to retrieve information by tracking affixed words back into their root. In an Indonesian setting, existing stemming methods have been observed, and the existing stemming methods are proven to result in high accuracy level. However, there are not many stemming methods for non-formal Indonesian text processing. This study introduces a new stemming method to solve problems in the non-formal Indonesian text data pre-processing. Furthermore, this study aims to improve the accuracy of text classifier models by strengthening stemming method. Using the Support Vector Machine algorithm, a text classifier model is developed, and its accuracy is checked. The experimental evaluation was done by testing 550 datasets in Indonesian using two different stemming methods. Findings The results show that using the proposed stemming method, the text classifier model has higher accuracy than the existing methods with a score of 0.85 and 0.73, respectively. These results indicate that the proposed stemming methods produces a classifier model with a small error rate, so it will be more accurate to predict a class of objects. Conclusion The existing Indonesian stemming methods are still oriented towards Indonesian formal sentences, therefore the method has limitations to be used in Indonesian non-formal sentences. This phenomenon underlies the suggestion of developing a corpus by normalizing Indonesian non-formal into formal to be used as a better stemming method. The impact of using the corpus as a stemming method is that it can improve the accuracy of the classifier model. In the future, the proposed corpus and stemming methods can be used for various purposes including text clustering, summarizing, detecting hate speech, and other text processing applications in Indonesian.

Funder

Direktorat Jenderal Pendidikan Tinggi

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3