Author:
Rishe Naphtali,Amini M. Hadi,Adjouadi Malek
Abstract
AbstractExtensive prior work has provided methods for the optimization of routing based on weights assigned to travel duration, and/or travel cost, and/or the distance traveled. Routing can be in various modalities, such as by car, on foot, by bicycle, via public transit, or by boat. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph in order to find the best route. Some users desire that the routing suggestion include consideration pertaining to the scenic-architectural quality of the path. For example, a user may seek a leisure walk via what they might deem as visually attractive architecture. Here, we are proposing a method to quantify such user preferences and scenic quality and to augment the standard routing methods by giving weight to the scenic quality. That is, instead of suggesting merely the time and cost-optimal route, we will find the best route that is tailored towards the user’s scenic quality preferences as an additional criterion to the time and cost. The proposed method uniquely weighs the scenic interest or residential street segments based on the property valuation data.
Funder
National Science Foundation
U.S. Department of Homeland Security
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Reference10 articles.
1. Kanoulas E, Du Y, Xia T, Zhang D. Finding fastest paths on a road network with speed patterns. In: 22nd international conference on data engineering (ICDE’06); 2006. p. 10. https://doi.org/10.1109/ICDE.2006.71.
2. Joo Y-J, Kim S-H. A new route guidance method considering the pedestrian level of service using a multi-criteria decision-making technique. J Korea Spat Inf Soc. 2011;19:83–91.
3. Shekelyan M, Jossé G, Schuber M, Kriegel H-P. Linear path skyline computation in bicriteria networks. In: International conference on database systems for advanced applications (DASFAA 2014). Lecture notes in computer science, vol. 8421. London: Springer; 2014. p. 173–87.
4. Galbrun E, Pelechrinis K, Terzi E. Urban navigation beyond shortest route: the case of safe paths. Inf Syst. 2016;57:160–71.
5. Hochmair HH. Spatial association of geotagged photos with scenic locations. In: Car A, Griesebner G, Strobl J, editors. Geospatial Crossroads@GI_Forum’10: proceedings of the geoinformatics forum Salzburg. Heidelberg: Wichmann; 2010. p. 91–100.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Exploration on Big Data Analytical Techniques: A Review;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28