Defining clusters of young autistic and typically developing children based on loudness-dependent auditory electrophysiological responses

Author:

Dwyer PatrickORCID,Wang Xiaodong,De Meo-Monteil Rosanna,Hsieh Fushing,Saron Clifford D.,Rivera Susan M.

Abstract

Abstract Background Autistic individuals exhibit atypical patterns of sensory processing that are known to be related to quality of life, but which are also highly heterogeneous. Previous investigations of this heterogeneity have ordinarily used questionnaires and have rarely investigated sensory processing in typical development (TD) alongside autism spectrum development (ASD). Methods The present study used hierarchical clustering in a large sample to identify subgroups of young autistic and typically developing children based on the normalized global field power (GFP) of their event-related potentials (ERPs) to auditory stimuli of four different loudness intensities (50, 60, 70, 80 dB SPL): that is, based on an index of the relative strengths of their neural responses across these loudness conditions. Results Four clusters of participants were defined. Normalized GFP responses to sounds of different intensities differed strongly across clusters. There was considerable overlap in cluster assignments of autistic and typically developing participants, but autistic participants were more likely to display a pattern of relatively linear increases in response strength accompanied by a disproportionately strong response to 70 dB stimuli. Autistic participants displaying this pattern trended towards obtaining higher scores on assessments of cognitive abilities. There was also a trend for typically developing participants to disproportionately fall into a cluster characterized by disproportionately/nonlinearly strong 60 dB responses. Greater auditory distractibility was reported among autistic participants in a cluster characterized by disproportionately strong responses to the loudest (80 dB) sounds, and furthermore, relatively strong responses to loud sounds were correlated with auditory distractibility. This appears to provide evidence of coinciding behavioral and neural sensory atypicalities. Limitations Replication may be needed to verify exploratory results. This analysis does not address variability related to classical ERP latencies and topographies. The sensory questionnaire employed was not specifically designed for use in autism. Hearing acuity was not measured. Variability in sensory responses unrelated to loudness is not addressed, leaving room for additional research. Conclusions Taken together, these data demonstrate the broader benefits of using electrophysiology to explore individual differences. They illuminate different neural response patterns and suggest relationships between sensory neural responses and sensory behaviors, cognitive abilities, and autism diagnostic status.

Funder

MIND Institute, University of California, Davis

University of California, Davis

National Institutes of Health

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Institute of Mental Health

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health,Developmental Biology,Developmental Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3