Predicting risk of the subsequent early pregnancy loss in women with recurrent pregnancy loss based on preconception data

Author:

Yang Xin,Wang Ruifang,Zhang Wei,Yang Yanting,Wang Fang

Abstract

Abstract Background For women who have experienced recurrent pregnancy loss (RPL), it is crucial not only to treat them but also to evaluate the risk of recurrence. The study aimed to develop a risk predictive model to predict the subsequent early pregnancy loss (EPL) in women with RPL based on preconception data. Methods A prospective, dynamic population cohort study was carried out at the Second Hospital of Lanzhou University. From September 2019 to December 2022, a total of 1050 non-pregnant women with RPL were participated. By December 2023, 605 women had subsequent pregnancy outcomes and were randomly divided into training and validation group by 3:1 ratio. In the training group, univariable screening was performed on RPL patients with subsequent EPL outcome. The least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were utilized to select variables, respectively. Subsequent EPL prediction model was constructed using generalize linear model (GLM), gradient boosting machine (GBM), random forest (RF), and deep learning (DP). The variables selected by LASSO regression and multivariate logistic regression were then established and compared using the best prediction model. The AUC, calibration curve, and decision curve (DCA) were performed to assess the prediction performances of the best model. The best model was validated using the validation group. Finally, a nomogram was established based on the best predictive features. Results In the training group, the GBM model achieved the best performance with the highest AUC (0.805). The AUC between the variables screened by the LASSO regression (16-variables) and logistic regression (9-variables) models showed no significant difference (AUC: 0.805 vs. 0.777, P = 0.1498). Meanwhile, the 9-variable model displayed a well discrimination performance in the validation group, with an AUC value of 0.781 (95%CI 0.702, 0.843). The DCA showed the model performed well and was feasible for making beneficial clinical decisions. Calibration curves revealed the goodness of fit between the predicted values by the model and the actual values, the Hosmer–Lemeshow test was 7.427, and P = 0.505. Conclusions Predicting subsequent EPL in RPL patients using the GBM model has important clinical implications. Future prospective studies are needed to verify the clinical applicability. Trial registration This study was registered in the Chinese Clinical Trial Registry with the registration number of ChiCTR2000039414 (27/10/2020).

Funder

the Medical Innovation and Development Project of Lanzhou University

the real-world study of recurrent pregnancy loss in China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3