Moonshine

Author:

Duncan John FR,Griffin Michael J,Ono Ken

Abstract

Abstract Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster "Image missing". The celebrated observations that $$ 1=1,\ \ \ 196884=1+196883,\ \ \ 21493760=1+196883+21296876,\ \ \ \dots\dots (*)$$ 1 = 1 , 196884 = 1 + 196883 , 21493760 = 1 + 196883 + 21296876 , ( * ) illustrate the case of J(τ)=j(τ)−744, whose coefficients turn out to be sums of the dimensions of the 194 irreducible representations of "Image missing". Such formulas are dictated by the structure of the graded monstrous moonshine modules. Recent works in moonshine suggest deep relations between number theory and physics. Number theoretic Kloosterman sums have reappeared in quantum gravity, and mock modular forms have emerged as candidates for the computation of black hole degeneracies. This paper is a survey of past and present research on moonshine. We also compute the quantum dimensions of the monster orbifold and obtain exact formulas for the multiplicities of the irreducible components of the moonshine modules. These formulas imply that such multiplicities are asymptotically proportional to dimensions. For example, the proportion of 1’s in (*) tends to $$\frac{\dim(\chi_{1})}{\sum_{i=1}^{194}\dim(\chi_{i})}=\frac{1}{5844076785304502808013602136}=1.711\ldots \times 10^{-28}. $$ dim ( χ 1 ) i = 1 194 dim ( χ i ) = 1 5844076785304502808013602136 = 1.711 × 1 0 28 . 2010 Mathematics Subject Classification: 11F11; 11 F22; 11F37; 11F50; 20C34; 20C35

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Mathematics (miscellaneous),Theoretical Computer Science

Reference239 articles.

1. Alexander, D, Cummins, C, McKay, J, Simons, C: Completely replicable functions, Groups, combinatorics & geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., Vol. 165. Cambridge Univ. Press, Cambridge (1992). pp. 87–98. MR 1200252 (94g:11029).

2. Aschbacher, M: The status of the classification of the finite simple groups. Notices Amer. Math. Soc. 51(7), 736–740 (2004). MR 2072045.

3. Aspinwall, PS: K3 surfaces and string duality. Fields, strings and duality (Boulder, CO, 1996). World Sci. Publ., River Edge, NJ (1997). pp. 421–540. MR 1479699 (98j:81243).

4. Aspinwall, PS, Morrison, DR: String theory on K3 surfaces, Mirror symmetry, II. AMS/IP Stud. Adv. Math., vol. 1, Amer. Math. Soc., Providence, RI, 703–716 (1997). MR 1416354 (97i:81128).

5. Astashkevich, A: On the structure of Verma modules over Virasoro and Neveu-Schwarz algebras. Comm. Math. Phys. 186(3), 531–562 (1997). MR 1463812 (98h:17028).

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Hecke system of harmonic Maass functions and applications to modular curves of higher genera;The Ramanujan Journal;2023-02-28

2. Proof of the elliptic expansion moonshine conjecture of Căldăraru, He, and Huang;Proceedings of the American Mathematical Society;2022-09-15

3. The Hasse invariant of the Tate normal form E5 and the class number of Q(−5l);Journal of Number Theory;2021-10

4. Fun with F24;Journal of High Energy Physics;2021-02

5. Cusps, congruence groups and Monstrous dessins;Indagationes Mathematicae;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3